
CS61C L04 Introduction to C (pt 2) (1)! Garcia, Spring 2010 © UCB!

! !Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

 Lecture 4 – Introduction to C (pt 2)  

 2010-01-27! C review update: Tonight
7:30-8:30pm @ 306 Soda!

All eyes on Apple ⇒ 
Today, Apple will make a  

 big announcement; many have
speculated itʼs a “tablet” (much like the
iPhone) which will change the industry.!

www.nytimes.com/2010/01/26/technology/26apple.html
CS61C L04 Introduction to C (pt 2) (2)! Garcia, Spring 2010 © UCB!

Review!

• All declarations go at the beginning of
each function except if you use C99.!
• Only 0 and NULL evaluate to FALSE.!
• All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.!
• A pointer is a C version of the
address.!
* “follows” a pointer to its value!
& gets the address of a value!

CS61C L04 Introduction to C (pt 2) (3)! Garcia, Spring 2010 © UCB!

More C Pointer Dangers!

• Declaring a pointer just allocates
space to hold the pointer – it does not
allocate something to be pointed to!!
• Local variables in C are not initialized,
they may contain anything.!
• What does the following code do?!

void f()
{
 int *ptr;
 *ptr = 5;
}

CS61C L04 Introduction to C (pt 2) (4)! Garcia, Spring 2010 © UCB!

Arrays (1/5)!

• Declaration:!
int ar[2];!

!declares a 2-element integer array. An
array is really just a block of memory.  
 int ar[] = {795, 635};!
!declares and fills a 2-elt integer array.!
• Accessing elements:!

ar[num]!

!returns the numth element.!

CS61C L04 Introduction to C (pt 2) (5)! Garcia, Spring 2010 © UCB!

Arrays (2/5)!

• Arrays are (almost) identical to
pointers!
• char *string and char string[] are
nearly identical declarations!

• They differ in very subtle ways:
incrementing, declaration of filled arrays!

• Key Concept: An array variable is a
“pointer” to the first element.!

CS61C L04 Introduction to C (pt 2) (6)! Garcia, Spring 2010 © UCB!

Arrays (3/5)!
• Consequences:!

• ar is an array variable but looks like a
pointer in many respects (though not all)!
• ar[0] is the same as *ar!
• ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access
arrays more conveniently.!

• Declared arrays are only allocated
while the scope is valid!
 char *foo() {
 char string[32]; ...;
 return string;
} is incorrect!

CS61C L04 Introduction to C (pt 2) (7)! Garcia, Spring 2010 © UCB!

Arrays (4/5)!

• Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a variable for declaration & incr!

• Wrong 
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
int ARRAY_SIZE = 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }!

• Why? SINGLE SOURCE OF TRUTH!
• Youʼre utilizing indirection and avoiding
maintaining two copies of the number 10!

CS61C L04 Introduction to C (pt 2) (8)! Garcia, Spring 2010 © UCB!

Arrays (5/5)!

• Pitfall: An array in C does not know its
own length, & bounds not checked!!

• Consequence: We can accidentally
access off the end of an array.!

• Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.!

• Segmentation faults and bus errors:!
• These are VERY difficult to find;  
be careful! (Youʼll learn how to debug
these in lab…)!

CS61C L04 Introduction to C (pt 2) (9)! Garcia, Spring 2010 © UCB!

Pointer Arithmetic (1/2)!

• Since a pointer is just a mem address, we
can add to it to traverse an array.!
• p+1 returns a ptr to the next array elt.!
• *p++ vs (*p)++ ?!

•  x = *p++ ⇒ x = *p ; p = p + 1;
•  x = (*p)++ ⇒ x = *p ; *p = *p + 1;!

• What if we have an array of large structs
(objects)?!

• C takes care of it: In reality, p+1 doesnʼt add
1 to the memory address, it adds the size of
the array element.!

CS61C L04 Introduction to C (pt 2) (10)! Garcia, Spring 2010 © UCB!

int get(int array[], int n)
{
 return (array[n]);

 // OR...
 return *(array + n);
}

Pointer Arithmetic (2/2)!

• C knows the size of the thing a pointer
points to – every addition or
subtraction moves that many bytes.!

• 1 byte for a char, 4 bytes for an int, etc.!

• So the following are equivalent:!

CS61C L04 Introduction to C (pt 2) (11)! Garcia, Spring 2010 © UCB!

Pointers in C!
• Why use pointers?!

• If we want to pass a huge struct or array,
itʼs easier / faster / etc to pass a pointer
than the whole thing.!

• In general, pointers allow cleaner, more
compact code.!

• So what are the drawbacks?!
• Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.!

• Dangling reference (premature free)!
• Memory leaks (tardy free)!

CS61C L04 Introduction to C (pt 2) (12)! Garcia, Spring 2010 © UCB!

C Strings!

• A string in C is just an array of
characters.!
! !char string[] = "abc";!
• How do you tell how long a string is?!

• Last character is followed by a 0 byte
(null terminator) ! !!
int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0) n++;
 return n;
}

CS61C L04 Introduction to C (pt 2) (13)! Garcia, Spring 2010 © UCB!

Pointer Arithmetic Peer Instruction Q!

How many of the following are invalid?!
I.  pointer + integer!
II.  integer + pointer!
III.  pointer + pointer!
IV.  pointer – integer!
V.  integer – pointer!
VI.  pointer – pointer!
VII.  compare pointer to pointer!
VIII.  compare pointer to integer!
IX.  compare pointer to 0!
X.  compare pointer to NULL!

#invalid
a)1

 b)2
 c)3
 d)4
 e)5

CS61C L04 Introduction to C (pt 2) (15)! Garcia, Spring 2010 © UCB!

int main(void){  
int A[] = {5,10};  
int *p = A;  

printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);  
 p = p + 1;  
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);  
*p = *p + 1;  
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);  
}"

If the first printf outputs 100 5 5 10, what will the
other two printf output?!
!a) 101 10 5 10 then 101 11 5 11  
b) 104 10 5 10 then 104 11 5 11  
c) 101 <other> 5 10 then 101 <3-others>  
d) 104 <other> 5 10 then 104 <3-others>  
e) One of the two printfs causes an ERROR "

Peer Instruction!

A[1]
5 10

A[0] p

CS61C L04 Introduction to C (pt 2) (17)! Garcia, Spring 2010 © UCB!

“And in Conclusion…”!
• Pointers and arrays are virtually same!
• C knows how to increment pointers!
• C is an efficient language, with little
protection!

• Array bounds not checked!
• Variables not automatically initialized!

• (Beware) The cost of efficiency is
more overhead for the programmer.!

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”!

CS61C L04 Introduction to C (pt 2) (18)! Garcia, Spring 2010 © UCB!

Reference slides!

You ARE responsible for the
material on these slides (theyʼre

just taken from the reading
anyway) ; weʼve moved them to

the end and off-stage to give
more breathing room to lecture!!

CS61C L04 Introduction to C (pt 2) (19)! Garcia, Spring 2010 © UCB!

Administrivia!
• Read K&R 6 by the next lecture!
• There is a language called D!!

• www.digitalmars.com/d/!

• Homework expectations!
• Readers donʼt have time to fix your
programs which have to run on lab
machines.!

• Code that doesnʼt compile or fails all of
the autograder tests ⇒ 0!

CS61C L04 Introduction to C (pt 2) (20)! Garcia, Spring 2010 © UCB!

Administrivia!
• Slip days!

• You get 3 “slip days” per year to use for any
homework assignment or project!

• They are used at 1-day increments. Thus 1
minute late = 1 slip day used.!

• Theyʼre recorded automatically (by checking
submission time) so you donʼt need to tell us
when youʼre using them!

• Once youʼve used all of your slip days, when a
project/hw is late, itʼs … 0 points.!

•  If you submit twice, we ALWAYS grade the
latter, and deduct slip days appropriately!

• You no longer need to tell anyone how your dog
ate your computer.!

• You should really save for a rainy day … we all
get sick and/or have family emergencies!!

CS61C L04 Introduction to C (pt 2) (21)! Garcia, Spring 2010 © UCB!

Pointers & Allocation (1/2)!

• After declaring a pointer:!
int *ptr;

!ptr doesnʼt actually point to anything
yet (it actually points somewhere - but
donʼt know where!). We can either:!

• make it point to something that already
exists, or!

• allocate room in memory for something
new that it will point to… (next time)!

CS61C L04 Introduction to C (pt 2) (22)! Garcia, Spring 2010 © UCB!

Pointers & Allocation (2/2)!

• Pointing to something that already
exists:!
 int *ptr, var1, var2;
 var1 = 5;
 ptr = &var1;
 var2 = *ptr;

• var1 and var2 have room implicitly
allocated for them.

ptr" var1" ?" var2" ?"5 5 ?

CS61C L04 Introduction to C (pt 2) (23)! Garcia, Spring 2010 © UCB!

Arrays (one elt past array must be valid)!

• Array size n; want to access from 0 to
n-1, but test for exit by comparing to
address one element past the array!
 int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)
 /* sum = sum + *p; p = p + 1; */

 sum += *p++;!
• Is this legal?!

• C defines that one element past end of
array must be a valid address, i.e., not
cause an bus error or address error!

CS61C L04 Introduction to C (pt 2) (24)! Garcia, Spring 2010 © UCB!

Pointer Arithmetic!
• So whatʼs valid pointer arithmetic?!

• Add an integer to a pointer.!
• Subtract 2 pointers (in the same array).!
• Compare pointers (<, <=, ==, !=, >, >=)!
• Compare pointer to NULL (indicates that
the pointer points to nothing).!

• Everything else is illegal since it
makes no sense:!

• adding two pointers!
• multiplying pointers !
• subtract pointer from integer!

CS61C L04 Introduction to C (pt 2) (25)! Garcia, Spring 2010 © UCB!

Pointer Arithmetic to Copy memory!

• We can use pointer arithmetic to
“walk” through memory:!
void copy(int *from, int *to, int n) {
 int i;
 for (i=0; i<n; i++) {
 *to++ = *from++;
 }
}
• Note we had to pass size (n) to copy!

CS61C L04 Introduction to C (pt 2) (26)! Garcia, Spring 2010 © UCB!

Arrays vs. Pointers!

• An array name is a read-only pointer
to the 0th element of the array.!
• An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.!

int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

int strlen(char *s)
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

Could be written: 
while (s[n])"

CS61C L04 Introduction to C (pt 2) (27)! Garcia, Spring 2010 © UCB!

Pointer Arithmetic Summary!
• x = *(p+1) ?!

⇒ x = *(p+1) ; "
• x = *p+1 ?!

⇒ x = (*p) + 1 ;
• x = (*p)++ ? !

⇒ x = *p ; *p = *p + 1;
• x = *p++ ? (*p++) ? *(p)++ ? *(p++) ?!

⇒ x = *p ; p = p + 1;
• x = *++p ? !

⇒ p = p + 1 ; x = *p ;

•  Lesson?!
• Using anything but the standard *p++ , (*p)++

causes more problems than it solves!!
CS61C L04 Introduction to C (pt 2) (28)! Garcia, Spring 2010 © UCB!

Segmentation Fault vs Bus Error?!
• http://www.hyperdictionary.com/!
• Bus Error!

• A fatal failure in the execution of a machine
language instruction resulting from the
processor detecting an anomalous condition on
its bus. Such conditions include invalid address
alignment (accessing a multi-byte number at an
odd address), accessing a physical address that
does not correspond to any device, or some
other device-specific hardware error. A bus
error triggers a processor-level exception which
Unix translates into a “SIGBUS” signal which, if
not caught, will terminate the current process."

• Segmentation Fault!
• An error in which a running Unix program

attempts to access memory not allocated to it
and terminates with a segmentation violation
error and usually a core dump.!

CS61C L04 Introduction to C (pt 2) (29)! Garcia, Spring 2010 © UCB!

C Pointer Dangers!
• Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.!

! int x = 1000;

 int *p = x; /* invalid */

 int *q = (int *) x; /* valid */

• The first pointer declaration is invalid
since the types do not match.!
• The second declaration is valid C but is
almost certainly wrong!

• Is it ever correct?!
CS61C L04 Introduction to C (pt 2) (30)! Garcia, Spring 2010 © UCB!

C Strings Headaches!
• One common mistake is to forget to
allocate an extra byte for the null
terminator.!
• More generally, C requires the
programmer to manage memory
manually (unlike Java or C++).!

• When creating a long string by
concatenating several smaller strings,
the programmer must insure there is
enough space to store the full string!!

• What if you donʼt know ahead of time
how big your string will be?!

• Buffer overrun security holes!!

CS61C L04 Introduction to C (pt 2) (31)! Garcia, Spring 2010 © UCB!

Common C Error!

• There is a difference between
assignment and equality!
a = b is assignment!
a == b is an equality test!

• This is one of the most common errors
for beginning C programmers!!

• One solution (when comparing with
constant) is to put the var on the right!  
If you happen to use =, it wonʼt compile.!
if (3 == a) { ...

CS61C L04 Introduction to C (pt 2) (32)! Garcia, Spring 2010 © UCB!

C String Standard Functions!

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
•  return 0 if str1 and str2 are identical (how is

this different from str1 == str2?)!

• char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory

at dst. The caller must ensure that dst has
enough memory to hold the data to be copied.!

