
1

CS61C Review

Midterm Spring 2008

Five Elements of a Computer

• Control

• Datapath

• Memory

• Input

• Output

Negative Numbers

• Sign/Magnitude

• One's Complement

• Two's Complement

• Pros, Cons of Each

C Topics

• Pointers!

• malloc, free

• Handles

• Pass by Value vs Pass by Reference

• Arrays

• Structs

• typedef

Memory Management

• Static

• The Stack

• The Heap

Memory Management

Allocation Schemes

• Best-fit

• First-fit

• Next-fit

• Slab

• Buddy

2

MIPS

• R, I, J format instructions (on your

green sheet!)

• MAL vs TAL

• MIPS to Binary, Binary to MIPS

• Difference between branches, jumps

Various Other Things

• Floats

• CALL (Compile, Assemble, Link, Load)

Garbage Collection

• Reference Counting

• Mark and Sweep

• Copying

• Pros and Cons

1

Socratic Method,

Understanding Floats

Float Cheat Sheet

NaNnonzero2E - 1 (all 1s)

+/- !02E - 1 (all 1s)

+/- fl. Pt #Anything1~ 2E - 2

Denormnonzero0

000

ValueSignificandExponent

S Exponent Significand

1 bit E bits F bits

(-1)S•(1 + Significand)x2(Exponent - Bias)

Normalized Float:

(-1)S•(Significand)x2(1 - Bias)

Denormalized Float: Bias = 2(E - 1) - 1

(0 and all 1s)

Just as in sign and magnitude, the sign bit encodes
the sign of the number, 0 means positive, 1 means

negative.

Float Cheat Sheet

S Exponent Significand

1 bit E bits F bits

Float Cheat Sheet

S Exponent Significand

1 bit E bits F bits

The significand is encoded as a fixed point unsigned

number, such that the most significant bit has a value of 2(-1).
Accordingly, the significand always has a value < 1.

Float Cheat Sheet

S Exponent Significand

1 bit E bits F bits

The exponent is encoded as an unsigned
integer with a bias. The bias rotates the

number ring such that the value zero no

longer corresponds with the bitpattern all

0s. Usually this is a bad thing, but here,
it’s what we want.

The bias here would be negative 3

(or 3), depending on which way you

are going.

Warm Up

Turn these decimal numbers into binary:

22, 1.5, 5/64, 22/32

Now normalize them.

Now make them into (single precision) floats.

2

Warm Up

Turn these decimal numbers into binary:

22, 1.5, 5/64, 22/32

10110, 1.1, 0.00101, 0.10110

Now normalize them.
1.011x4, 1.1x20, 1.01x2-3, 1.011x2-1

Now make them into (single precision) floats.

[0|4+127|0b0110….0]

[0|0+127|0b10…0]
[0|-3+127|0b010…0]

[0|-1+127|0b0110…0]

Question:

Why bother with a bias? Can’t we just use a Two’s comp.

exponent representation?

Related questions:

Which of the following two (single precision) floats is bigger?

0x7f00 0000 or 0x0080 0000

Which of the following two integers is bigger?

0x7f00 0000 or 0x0080 0000

Now assume we used a two’s complement exponent instead, which of

the two floats is bigger?

0x7f00 0000 or 0x0080 0000

What would zero encode as with a two’s complement exponent?

Talk to your neighbor about these!

Question:

Why bother with a bias? Can’t we just use a Two’s comp.

exponent representation?

Sure, it works. But …

Biased exponent => existing integer hardware comparators

still work!

Zero = 0x4000 0000 => kind of weird.

Most negative exponent = 0b1000 0000

Question:

Why is the bias 2(E - 1) - 1 (0 and all 1s)?

Related questions:

What fraction (roughly) of the values positive floating point numbers

represent are in the range [0,1)?

What about the range [1, infinity)?

Suppose we change the bias to 0, how would the answers above

change?

How about using 2E -1 as the bias?

What choice of bias would split the represented values such that half are

in [0, 4), and half are in [4, infinity)?

Question:

Why is the bias 2(E - 1) - 1 (0 and all 1s)?

It’s a design choice.

2(E-1) - 1 splits the representation about 1.0
Half the positive floats are < 1, Half are > 1

Question:

Why is the implicit denorm exponent (1-Bias)?

Related questions:
What is the smallest non-zero denorm?

What is the second smallest, third?

What is the step size for denormalized numbers?

How many positive denorms are there?

What is the value of the largest denorm?

How does this value relate to step size and # denorms?

What is the value of the smallest normalized float?

What is the step size b/w this smallest normal and its greater neighbor?

How far apart are the smallest normal and the largest denorm?

Suppose the denorm exponent were (0-Bias), as the normal pattern

suggests, what would the step size be?

Considering the number of steps and the step size, what would the largest

denorm’s value be?

3

Question:

Why is the implicit denorm exponent (1-Bias)?

Related questions:
What is the smallest non-zero denorm? (-1)0(2-23)2-126 = 2-149

What is the second smallest, third? 2-148 = 2(2-149); 2-148 + 2-149 = 3(2-149)

What is the step size for denormalized numbers? 2-149

How many positive denorms are there? 23 significand bits -> 223 denorms

What is the value of the largest denorm? (223-1)(2-149) = 2-126 - 2-149

How does this value relate to step size and # denorms? Stepsize*#denorms

What is the value of the smallest normalized float? (-1)0(1 + 0)2-126 = 2-126

What is the step size b/w this smallest normal and its greater neighbor? 2-149

How far apart are the smallest normal and the largest denorm? 2-149

Suppose the denorm exponent were (0-Bias), as the normal pattern

suggests, what would the step size be? 2-150

Considering the number of steps and the step size, what would the largest

denorm’s value be? (223-1)(2-150) = 2-127 - 2-150

Question:

Why is the implicit denorm exponent (1-Bias)?

Implicit Exponent = (0-Bias) => Gaps in Representation

Using (1-Bias):

Using (0-Bias):

Denorms

Smallest Norm Exponent

Next Norm Exponent

Question:

Why is 224 + 1.0 = 224, but (224 + 21) + 1.0 = (224 + 22)?

Related questions:

Why are there floats X such that X+1.0 = X?

What is the smallest such number? (Hint: Think about lab 6.)

What do the bottom-most bits of 224’s significand look like?

What about (224 + 21)’s significand?

What are the four rounding modes that floats use?

How would they round the following binary numbers to the nearest

integer? 00.00, 00.01, 00.10, 00.11, 01.00, 01.01, 01.10, 01.11

Which patterns do the lower bits of the significands of 224 and (224 + 21)

match with? What about after you add 1.0?

What rounding modes could make the stated question possible?

Question:

Why is 224 + 1.0 = 224, but (224 + 21) + 1.0 = (224 + 22)?

Only 23 significand bits means 1.0 is just barely too small relative to 224’s

implicit 1 to be saved.

Floating point unit has 2 guard bits used for intermediate computation.

The bits of the first computation look like this:

[1][00…000][10]

The bits of the second computation look like this:

[1][00…001][10]

Need to round to fit the guard bits in the significand.

Default (aka unbiased or round to even) rounding mode would round to

[1][00…000] and [1][00…010] respectively.

Round towards +infinity would do the same.

1

MIPS, C, and You

Ropes

struct ropeNode {

char * string; // 0x0 offset

struct ropeNode * next; // 0x4 offset

}

typedef struct ropeNode* rope;

rope weave(char * str, rope r){

// append str to the front of r (copy str)

}

void fray(rope r){

// free all memory associated with r

}

Weave, C->MIPS
struct ropeNode {

char * string; // 0x0 offset

struct ropeNode * next; // 0x4 offset

}

rope weave(char * str, rope r){

rope end = (rope) malloc (sizeof(struct ropeNode));

end->string = (char *) malloc ((strlen(str) + 1)*sizeof(char));

strcpy(end->string, str);

end->next = r;

return end;

}

$s0 = str, $s1 = r, $s2 = end

weave:

FILL ME IN!

Weave, in MIPS

weave:

#prologue

addiu $sp, $sp, -16

sw $ra, 0($sp)

sw $s0, 4($sp)

sw $s1, 8($sp)

sw $s2, 12($sp)

#body

move $s0, $a0
move $s1, $a1

li $a0, 8

jal malloc

move $s2, $v0
move $a0, $s0

jal strlen

addiu $a0, $v0, 1

jal malloc

sw $v0, 0($s2)

move $a0, $v0

move $a1, $s0

jal strcpy

sw $s1, 4($s2)

move $v0, $s2

#epilogue

lw $ra, 0($sp)

lw $s0, 4($sp)

lw $s1, 8($sp)

lw $s2, 12($sp)

addiu $sp, $sp, 16

jr $ra

Fray, C->MIPS

struct ropeNode {

char * string; // 0x0 offset

struct ropeNode * next; // 0x4 offset

}

void fray(rope r){

if (r->next != NULL)

fray(r->next);

free(r->string);

free(r);

}

fray:

#fill me in!

Fray, in MIPS

fray:

addiu $sp, $sp, -8

sw $ra, 0($sp)

sw $s0, 4($sp)

move $s0, $a0

lw $t0, 4($s0)

beq $t0, $zero, done

move $a0, $t0

jal fray

done: lw $a0, 0($s0)

jal free

move $a0, $s0

jal free

lw $ra, 0($sp)

lw $s0, 4($sp)

addiu $sp, $sp, 8

jr $ra

