
CS 61C L39 x86 (1) Wawrzynek Spring 2006 © UCB

5/1/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 40 - X86 Processors

CS 61C L39 x86 (2) Wawrzynek Spring 2006 © UCB

Outline

°History of Intel x86 line.
°MIPS versus x86
°Unusual features of x86
° Internal details of implementations

CS 61C L39 x86 (3) Wawrzynek Spring 2006 © UCB

X86
From Wikipedia, the free encyclopedia.
° x86 or Intel 80x86 is the generic name of an architecture of

microprocessors first developed and manufactured by Intel,
also manufactured at various stages by AMD, Cyrix, NEC,
Transmeta (that uses it in PDAs too, see Crusoe) and sundry
other makers at various stages in its nearly 25-year history.

° In addition to basic architecture itself, these names are also
used to describe a family of particular microprocessors
manufactured by Intel, including the Intel 8086, Intel 80186,
Intel 80286, Intel 80386, Intel 80486, Pentium, Pentium Pro,
Pentium II, Pentium III, Pentium 4, and Pentium M,. The
architecture of Intel's 32-bit x86 processors is sometimes
known as IA-32.

° Intel's IA-64 architecture used in its Itanium processors is
related to x86, but incompatible with its instruction set. AMD's
x86-64 is backward-compatible with x86.

CS 61C L39 x86 (4) Wawrzynek Spring 2006 © UCB

Intel History: ISA evolved since 1978
° 8086: 16-bit, all internal registers 16 bits wide;

no general purpose registers; ’78
° 8087: + 60 Fl. Pt. instructions, (Prof. Kahan)

adds 80-bit-wide stack, but no general purpose registers; ‘80
° 8088: simpler version of 8086 adopted as standard CPU of the

IBM PC; ‘81
° 80286: expands addressable memory to 16MB (from 1MB), adds

elaborate protection model; ‘82
° 80386: 32-bit; converts 8 16-bit registers into

8 32-bit general purpose registers;
new addressing modes; adds paging to support OS; ‘85

° 80486, Pentium, Pentium Pro: + 4 instructions
° MMX: + 57 instructions for multimedia; ’96
° Pentium III: +70 instructions for multimedia; ‘99
° Pentium 4: +144 instructions for multimedia; '00
° (AMD extends ISA to 64 bits; ’02)

CS 61C L39 x86 (5) Wawrzynek Spring 2006 © UCB

x86 design decisions

° Early x86 were designed to be hand programmed
as much as compiled to
• Thus, complicated instructions (e.g., string copy) which

make a programmer's life easier were good
- Current x86 processors will translate these on the fly

° Memory was very expensive
• So keeping code size small was very important

° Registers were very expensive
° Backwards compatibility is king!

• Thus can only add to the ISA, never take away

CS 61C L39 x86 (6) Wawrzynek Spring 2006 © UCB

MIPS versus 80386

°Address: 32-bit
°Page size: 4KB
°Data aligned
°Destination reg: Left

•add $rd,$rs1,$rs2

°Regs: $0, $1, ..., $31
°Reg = 0: $0
°Return address: $31

° 32-bit
° 4KB
°Data unaligned
°Right

•add %rs1,%rs2,%rd

°%r0, %r1, ..., %r7
° (n.a.)
° return address is

automatically saved on
the stack

CS 61C L39 x86 (7) Wawrzynek Spring 2006 © UCB

MIPS versus Intel 80x86
° MIPS: “Three-address architecture”

• Arithmetic-logic specify all 3 operands
add $s0,$s1,$s2 # s0=s1+s2
• Benefit: fewer instructions ⇒ performance

° x86: “Two-address architecture”
• Only 2 operands,

so the destination is also one of the sources
 add $s1,$s0 # s0=s0+s1
• Often true in C statements: c += b;

- Also present in 70s era micro-architectures, such as the early
VAXes, which is why C has such operators

– C is portable VAX assembly

• Benefit: smaller instructions ⇒ smaller code
- Code size was MUCH more important when the x86 was first

designed
• Cost: May require more register moves

CS 61C L39 x86 (8) Wawrzynek Spring 2006 © UCB

MIPS versus Intel 80x86
° MIPS: “load-store architecture”

• Only Load/Store access memory; rest operations register-register;
e.g.,
lw $t0, 12($gp)
add $s0,$s0,$t0 # s0=s0+Mem[12+gp]

• Benefit: simpler hardware ⇒ easier to pipeline, higher
performance
- Only works well when one has plenty of registers

° x86: “register-memory architecture”
• All operations can have an operand in memory; other operand is a

register; e.g.,
add 12(%gp),%s0 # s0=s0+Mem[12+gp]
• Benefit: fewer instructions in the program ⇒ smaller code
• Cost: More complicated hardware, more instructions to implement

CS 61C L39 x86 (9) Wawrzynek Spring 2006 © UCB

MIPS versus Intel 80x86

°MIPS: “fixed-length instructions”
• All instructions same size, e.g., 4 bytes
• simple hardware ⇒ performance
• branches can be multiples of 4 bytes

° x86: “variable-length instructions”
• Instructions are multiple of bytes: 1 to 17;

- Simple, common instructions should be smaller
- small code size (30% smaller?)

– Provides for a better icache hit rate, if the icache stores instructions

- But significantly complicates decoding
• Instructions can include 8- or 32-bit immediates

CS 61C L39 x86 (10) Wawrzynek Spring 2006 © UCB

MIPS versus Intel 80x86

°MIPS: “fixed-length operations”
• All operations on same data size: 4 bytes; whole

register changes
• Goal: simple hardware and high performance

° x86: “variable-length operations”
• Operations are multiple of bytes: 1, 2, 4
• Only part of register changes if op < 4 bytes
• Condition codes are set based on width of operation for

Carry, Sign, Zero

°X86: 16-bits called word; 32-bits double word or
long word (halfword and word in MIPS)

CS 61C L39 x86 (11) Wawrzynek Spring 2006 © UCB

MIPS is example of RISC
°RISC = Reduced Instruction Set Computer

• Term coined at Berkeley, ideas pioneered by IBM,
Berkeley, Stanford

°RISC characteristics:
• Load-store architecture
• Fixed-length instructions (typically 32 bits)
• Three-address architecture
• Plentiful registers
• All instructions effectively take identical time
• Designed for high performance operation and as a

compiler target

°RISC examples: MIPS, SPARC, IBM/Motorola
PowerPC, Compaq Alpha, ARM, SH4, HP-PA.

CS 61C L39 x86 (12) Wawrzynek Spring 2006 © UCB

x86 is the classic CISC architecture

°CISC = Complex Instruction Set Computer
°General characteristics:

• Instructions have greater operand types
(constants, registers, memory)
• Variable length instructions

- Instruction latency may vary heavily between
different instructions

• Usually sparse registers
• Designed to save code space and as a target for

hand-written assembly

° x86 family, Motorola 68k series (pre
PowerPC Macintoshes, Palm Pilot)

CS 61C L39 x86 (13) Wawrzynek Spring 2006 © UCB

RISC versus CISC
CISC ⇒ more expensive implementation,

lower-performance.
Why is it that the x86, being a CISC, has

been as successful as it has?
1. Business alliance with IBM – x86 became

the standard processor for PCs.
2. IC manufacturing – Intel leads the world

(with IBM) in state-of-the-art fabrication.
3. Newer x86 implementations adopt RISC

features:
- New RISC-like instructions
- On-the-fly translation of complex instructions.

CS 61C L39 x86 (14) Wawrzynek Spring 2006 © UCB

Unusual features of 80x86
°8 32-bit Registers have names;
16-bit 8086 names with “e” prefix:
•eax, ecx, edx, ebx, esp, ebp, esi, edi
• 80x86 word is 16 bits, double word is 32 bits

°PC is called eip (instruction pointer)
°leal (load effective address) instruction
•Calculate address like a load, but load address
into register, not data
• Load 32-bit address:
 leal -4000000(%ebp),%esi
 # esi = ebp - 4000000

CS 61C L39 x86 (15) Wawrzynek Spring 2006 © UCB

Instructions:MIPS vs. 80x86

°addu, addiu
°subu

°and,or, xor

°sll, srl, sra

°lw

°sw

°mov

°li

°lui

°addl

°subl

°andl, orl, xorl

°sall, shrl, sarl

°movl mem, reg

°movl reg, mem

°movl reg, reg

°movl imm, reg

°Not needed

CS 61C L39 x86 (16) Wawrzynek Spring 2006 © UCB

80386 addressing (ALU instructions too)
°base reg + offset (like MIPS)

•movl -8000044(%ebp), %eax

°base reg + index reg (2 regs form addr.)
•movl (%eax,%ebx),%edi
 # edi = Mem[ebx + eax]

°scaled reg + index (shift one reg by 1,2)
•movl(%eax,%edx,4),%ebx
 # ebx = Mem[edx*4 + eax]

°scaled reg + index + offset
•movl 12(%eax,%edx,4),%ebx
 # ebx = Mem[edx*4 + eax + 12]

CS 61C L39 x86 (17) Wawrzynek Spring 2006 © UCB

Branch in 80x86
°Rather than compare registers, x86 uses

special 1-bit registers called “condition
codes” that are set as a side-effect of ALU
operations
• S - Sign Bit
• Z - Zero (result is all 0)
• C - Carry Out
• P - Parity: set to 1 if even number of ones in

rightmost 8 bits of operation

°Conditional Branch instructions then use
condition flags for all comparisons: <, <=, >,
>=, ==, !=
• Conditional execution and condition codes are

also present in some RISC architectures, such
as the ARM ISA

CS 61C L39 x86 (18) Wawrzynek Spring 2006 © UCB

Branch: MIPS vs. 80x86

°beq

°bne

°slt; beq

°slt; bne

°jal

°jr $31

°(cmpl;) je
if previous operation
set condition code, then
cmpl unnecessary
°(cmpl;) jne

°(cmpl;) jlt

°(cmpl;) jge

°call

°ret

CS 61C L39 x86 (19) Wawrzynek Spring 2006 © UCB

 while (save[i]==k)
i = i + j;

(i,j,k: %edx,%esi,%ebx)
leal -400(%ebp),%eax

.Loop: cmpl %ebx,(%eax,%edx,4)
jne .Exit
addl %esi,%edx
j .Loop

.Exit:

While in C/Assembly: 80x86

C

x
8
6

Note: cmpl replaces sll, add, lw in loop

CS 61C L39 x86 (20) Wawrzynek Spring 2006 © UCB

Unusual features of 80x86

°Memory Stack is part of instruction set
•call places return address onto stack,
increments esp (Mem[esp]=eip+6; esp+=4),
as well as changing the flow of control
•push places value onto stack, increments esp
•pop gets value from stack, decrements esp

°incl, decl (increment, decrement)
incl %edx # edx = edx + 1

CS 61C L39 x86 (21) Wawrzynek Spring 2006 © UCB

Unusual features of 80x86: Floating Pt.

°Floating point uses a separate stack;
load, push operands, perform operation,
pop result
 fildl (%esp)

fpstack = M[esp],
convert integer to FP

flds -8000048(%ebp)
push M[ebp-8000048]

fsubp %st,%st(1)
subtract top 2 elements

fstps -8000048(%ebp)
M[ebp-8000048] = difference

CS 61C L39 x86 (22) Wawrzynek Spring 2006 © UCB

Conclusion

°Once you’ve learned one RISC instruction set,
easy to pick up the rest
• ARM, Compaq/DEC Alpha, Hitatchi SuperH,

IBM/Motorola PowerPC, Sun SPARC, ...

° Intel 80x86 is a “horse of different color”
• But still reasonably straightforward, albeit more

complicated

°RISC emphasis: performance, HW simplicity,
compiler targets
° 80x86 emphasis: code size and hand coding
• A decision which was right at the time, but is no longer

really relevant

CS 61C L39 x86 (23) Wawrzynek Spring 2006 © UCB

Announcements:
°Midterm 3:
• Tuesday 5/9, 6:30-9:30, 1 Pimentel
• Format: 45 points (MT1&2 were 30 each)
- 25 points on final 1/3 of semester (pipelining

included)
- 20 points on 61c “greatest hits”

Basic C programming concepts,
MIPS programming,

 Processor Design (datapath/control),
Synchronous Digital System Design (data
movement/Flip-flops, simple CL blocks).

• TA lead review session, 2-4pm Sunday
(5/7), 10 Evans.

CS 61C L39 x86 (24) Wawrzynek Spring 2006 © UCB

Announcements:
°This week schedule:
• Today: “x86” & Course Evaluation
 fill out course evaluation - VERY
IMPORTANT

 Bring a #2 pencil.
• Friday: Alternatives to Processors: FPGAs

°Next Week:
•Monday: course wrap up, review
• Tuesday evening exam
•Grades out end of next week.

CS 61C L39 x86 (25) Wawrzynek Spring 2006 © UCB

Extra Slides:
micro-architecture and
implementation details

CS 61C L39 x86 (26) Wawrzynek Spring 2006 © UCB

Intel Internals

°Hardware below instruction set called
"microarchitecture"
°Pentium Pro, Pentium II, Celeron,
Pentium III are all based on same
microarchitecture (1994)
• Improved clock rate (from process
shrinks), increased cache size, some
minor design tweaks

°AMD Athlon/Duron is a different beast
°Pentium 4 had new microarchitecture
°Pentium M based on Pentium 3

CS 61C L39 x86 (27) Wawrzynek Spring 2006 © UCB

Dynamic Scheduling in Pentium Pro, II, III
° PPro doesn’t pipeline 80x86 instructions
• Instead, it translates each x86 instruction

into one or more 72 bit "micro-operations" (
µOps)

°It takes 1 clock cycle to determine the
length of the x86 instruction + 2 more to
create the µOps
• Most instructions translate into 1-4 µOps
• The PPro can translate up to 3 instructions

into 5 µOps/cycle if the instructions are
ordered correctly

°10 stage pipeline for micro-operations

CS 61C L39 x86 (28) Wawrzynek Spring 2006 © UCB

Hardware support
°Out-of-Order execution: allow a
instructions to execute in a different
order than they appear in the
instruction stream.
• An instruction waits in a queue until all of its

input operands are ready, then gets executes on
the appropriate “function unit”

°Fetch in-order, execute out-of-order,
commit (change processor state) in
order
•Necessary for precise exceptions if
something goes wrong
- It is necessary to insure that every

instruction after the bad one never executed

CS 61C L39 x86 (29) Wawrzynek Spring 2006 © UCB

Hardware for out of order execution

°Need HW buffer for
results of uncommitted
instructions: reorder
buffer
•Reorder buffer can be
operand source
•Once operand
“commits”, result is
found in register
•Discard results on
mispredicted branches
or on exceptions

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

CS 61C L39 x86 (30) Wawrzynek Spring 2006 © UCB

Dynamic Scheduling in Pentium Pro
Max. instructions issued/clock 3
Max. µOps issued/clock 5
Max. µOps complete exec./clock 5
Max. instr. commited/clock 3
Instructions in reorder buffer 40
2 integer functional units (FU), 1 floating
point FU, 1 branch FU, 1 Load FU, 1 Store
FU

CS 61C L39 x86 (31) Wawrzynek Spring 2006 © UCB

Pentium 4
° Also translates from 80x86 to micro-ops

• But translates before the Icache

° P4 has better branch predictor, more FUs
• Overclocked integer ALUs, so 4 integer ALU ops/cycle in the

core

° Clock rates:
• Pentium III 1 GHz v. Pentium IV 1.5 GHz
• 10 stage pipeline vs. 20 stage pipeline

° Faster memory bus: 400 MHz v. 133 MHz
° Caches

• Pentium III: L1I 16KB, L1D 16KB, L2 256 KB
• Pentium 4: L1I 12 K µOps, L1D 8 KB, L2 256 KB
• AMD Athlon: L1I 64KB, L1D 64KB, L2 256 KB
• AMD Duron: L1I 64KB, L1D 64KB, L2 64 KB victim cache
• Block size: PIII 32B v. P4 128B

CS 61C L39 x86 (32) Wawrzynek Spring 2006 © UCB

Pentium 4 features

°Multimedia instructions 128 bits wide vs. 64
bits wide => 144 new instructions
• When used by programs??
• Still too short to be attractive compiler targets

- Is a fair amount of compiler lore on compiling to vector
architectures

• Many of the new instructions are surprisingly slow

° Instruction Cache holds micro-operations vs.
80x86 instructions
• no decode stages of 80x86 on cache hit
• called “trace cache” (TC)

CS 61C L39 x86 (33) Wawrzynek Spring 2006 © UCB

Pentium, Pentium Pro, Pentium 4 Pipeline

°Pentium (P5) = 5 stages
Pentium Pro, II, III (P6) = 10 stages
Pentium 4 (NetBurst) = 20 stages

“Pentium 4 (Partially) Previewed,” Microprocessor Report, 8/28/00

CS 61C L39 x86 (34) Wawrzynek Spring 2006 © UCB

Block Diagram of Pentium 4 Microarchitecture

° BTB = Branch Target Buffer (branch predictor)
° I-TLB = Instruction TLB, Trace Cache = Instruction cache
° RF = Register File; AGU = Address Generation Unit
° "Double pumped ALU" means ALU clock rate 2X => 2X ALU F.U.s

CS 61C L39 x86 (35) Wawrzynek Spring 2006 © UCB

Pentium III v. Pentium 4 in benchmarks

°PC World magazine, Nov. 20, 2000
•WorldBench 2000 benchmark (business)
•P4 score @ 1.5 GHz: 164 (bigger is better)
•PIII score @ 1.0 GHz: 167
•AMD Althon @ 1.2 GHz: 180
• (Media apps do better on P4 v. PIII)

°P4 has the marketing megahertz, but is
actually down on performance

CS 61C L39 x86 (36) Wawrzynek Spring 2006 © UCB

Why?

° Instruction count is the same for x86
°Clock rates: P4 > Althon > PIII
°How can P4 be slower?
°Time =
Instruction count x CPI x 1/Clock rate
°Average Clocks Per Instruction (CPI)
of P4 must be worse than Althon, PIII

