CS61C — Machine Structures

Lecture 40 - X86 Processors

5/1/2006
John Wawrzynek
(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS 61C L39 x86 (1) Wawrzynek Spring 2006 © UCB

Outline

°History of Intel x86 line.

°MIPS versus x86

°Unusual features of x86

°Internal details of implementations

CS 61C L39 x86 (2) Wawrzynek Spring 2006 © UCB

X86

From Wikipedia, the free encyclopedia.

° x86 or 80x86 is the generic name of an architecture of
first developed and manufactured by Intel,
also manufactured at various stages by , , ,
(that uses it in PDAs too, see) and sundry
other makers at various stages in its nearly 25-year history.

° In addition to basic architecture itself, these names are also
used to describe a family of particular microprocessors
manufactured by Intel, including the , ,

’ . The
architecture of Intel's 32-bit x86 processors is sometimes
known as

° Intel's architecture used in its processors is
related to x86, but incompatible with its . AMD's
is with x86.

CS 61C L39 x86 (3) Wawrzynek Spring 2006 © UCB

Intel History: ISA evolved since 1978

° 8086: 16-bit, all internal registers 16 bits wide;
no general purpose registers; '78

° 8087: + 60 FI. Pt. instructions, (Prof. Kahan)
adds 80-bit-wide stack, but no general purpose registers; ‘80

° 8088: simg)ler version of 8086 adopted as standard CPU of the
IBM PC; ‘81

° 80286: expands addressable memory to 16MB (from 1MB), adds
elaborate protection model; ‘82

° 80386: 32-bit; converts 8 16-bit registers into
8 32-bit general purpose re%isters;
new addressing modes; adds paging to support OS; ‘85

° 80486, Pentium, Pentium Pro: + 4 instructions

° MMX: + 57 instructions for multimedia; 96

° Pentium lll: +70 instructions for multimedia; ‘99
° Pentium 4: +144 instructions for multimedia; '00
° (AMD extends ISA to 64 bits; '02)

CS 61C L39 x86 (4) Wawrzynek Spring 2006 © UCB

x86 design decisions

° Early x86 were designed to be hand programmed
as much as compiled to

» Thus, complicated instructions (e.g., string copy) which
make a programmer's life easier were good

Current x86 processors will translate these on the fly

° Memory was very expensive
- So keeping code size small was very important

° Registers were very expensive

° Backwards compatibility is king!
* Thus can only add to the ISA, never take away

CS 61C L39 x86 (5) Wawrzynek Spring 2006 © UCB

MIPS versus 80386

°Address: 32-bit ©32-bit
°Page size: 4KB °4KB
°Data aligned °Data unaligned

°Destination reg: Left °Right
cadd $rd,$rsl,$rs2 cadd %rsl,%rs2,%rd

°Regs: $0, $1, ..., $31 °%r0, %r1, ..., %r7
°Reg =0: $0 °(n.a.)

°Return address: $31 °return address is
automatically saved on
the stack

CS 61C L39 x86 (6) Wawrzynek Spring 2006 © UCB

MIPS versus Intel 80x86

° MIPS: “Three-address architecture”
+ Arithmetic-logic specify all 3 operands
add $s0,$s1,8$s2 # sO=sl+s2
+ Benefit: fewer instructions = performance

° x86: “Two-address architecture”

+ Only 2 operands,
so the destination is also one of the sources

add $s1,%$s0 # s0=s0+sl
- Often true in C statements: ¢ += b;

- Also present in 70s era micro-architectures, such as the early
VAXes, which is why C has such operators

— Cis portable VAX assembly
- Benefit: smaller instructions = smaller code

- Code size was MUCH more important when the x86 was first
designed

+ Cost: May require more register moves

CS 61C L39 x86 (7) Wawrzynek Spring 2006 © UCB

MIPS versus Intel 80x86

° MIPS: “load-store architecture”
+ Only Load/Store access memory; rest operations register-register;
ed.,

lw $t0, 12($gp)
add $s0,$s0,$t0 # sO0=s0+Mem[12+gp]

+ Benefit: simpler hardware = easier to pipeline, higher
performance

- Only works well when one has plenty of registers

° x86: “register-memory architecture”

+ All operations can have an operand in memory; other operand is a
register; e.g.,

add 12 (%gp) ,%s0 # sO0=s0+Mem[1l2+gp]
+ Benefit: fewer instructions in the program = smaller code
+ Cost: More complicated hardware, more instructions to implement

CS 61C L39 x86 (8) Wawrzynek Spring 2006 © UCB

MIPS versus Intel 80x86

°MIPS: “fixed-length instructions”
+ All instructions same size, e.g., 4 bytes
» simple hardware = performance

» branches can be multiples of 4 bytes

°x86: “variable-length instructions”

* Instructions are multiple of bytes: 1 to 17;
Simple, common instructions should be smaller

small code size (30% smaller?)
— Provides for a better icache hit rate, if the icache stores instructions

But significantly complicates decoding
* Instructions can include 8- or 32-bit immediates

CS 61C L39 x86 (9) Wawrzynek Spring 2006 © UCB

MIPS versus Intel 80x86

°MIPS: “fixed-length operations”

+ All operations on same data size: 4 bytes; whole
register changes

* Goal: simple hardware and high performance

°x86: “variable-length operations”
+ Operations are multiple of bytes: 1, 2, 4
+ Only part of register changes if op < 4 bytes

+ Condition codes are set based on width of operation for
Carry, Sign, Zero

°X86: 16-bits called word; 32-bits double word or
long word (halfword and word in MIPS)

CS 61C L39 x86 (10) Wawrzynek Spring 2006 © UCB

MIPS is example of RISC

°RISC = Reduced Instruction Set Computer
* Term coined at Berkeley, ideas pioneered by IBM,
Berkeley, Stanford
°RISC characteristics:
 Load-store architecture
* Fixed-length instructions (typically 32 bits)
* Three-address architecture
* Plentiful registers
+ All instructions effectively take identical time

* Designed for high performance operation and as a
compiler target

°RISC examples: MIPS, SPARC, IBM/Motorola
PowerPC, Compaq Alpha, ARM, SH4, HP-PA.

CS 61C L39 x86 (11) Wawrzynek Spring 2006 © UCB

x86 is the classic CISC architecture

°CISC = Complex Instruction Set Computer

° General characteristics:

* Instructions have greater operand types
(constants, registers, memory)

+ Variable length instructions

Instruction latency may vary heavily between
different instructions

+ Usually sparse registers
* Designed to save code space and as a target for
hand-written assembly

°x86 family, Motorola 68k series (pre
PowerPC Macintoshes, Palm Pilot)

CS 61C L39 x86 (12) Wawrzynek Spring 2006 © UCB

RISC versus CISC

CISC = more expensive implementation,
lower-performance.

Why is it that the x86, being a CISC, has
een as successful as it has?

1. Business alliance with IBM — x86 became
the standard processor for PCs.

2. IC manufacturing - Intel leads the world
(with IBM) in state-of-the-art fabrication.

3. Newer x86 implementations adopt RISC
features:

- New RISC-like instructions
- On-the-fly translation of complex instructions.

CS 61C L39 x86 (13) Wawrzynek Spring 2006 © UCB

Unusual features of 80x86

°8 32-bit Registers have names;
16-bit 8086 names with “e” prefix:

*eax, ecx, edx, ebx, esp, ebp, esi, edi
- 80x86 word is 16 bits, double word is 32 bits

°PC is called eip (instruction pointer)

°leal (load effective address) instruction

« Calculate address like a load, but load address
into register, not data

- Load 32-bit address:

leal -4000000 (%ebp) ,%esi
esi = ebp - 4000000

CS 61C L39 x86 (14) Wawrzynek Spring 2006 © UCB

Instructions:MIPS vs. 80x86

°addu, addiu °addl

°subu °subl

‘and,or, xor °andl, orl, xorl
°sll, srl, sra °sall, shrl, sarl
°lw ‘movl mem, reg
°sw ‘movl reg, mem
‘mov ‘movl reg, reg
°1i ‘movl imm, reg
°lui °Not needed

CS 61C L39 x86 (15) Wawrzynek Spring 2006 © UCB

80386 addressing (ALU instructions too)

°base reg + offset (like MIPS)
emovl -8000044 (%ebp), %eax

°base reg + index reg (2 regs form addr.)
'movl (%eax, %ebx) , %edi
edi = Mem[ebx + eax]
°scaled reg + index (shift one reg by 1,2)
'movl (%eax, %$edx,4) ,%ebx
ebx = Mem[edx*4 + eax]
°scaled reg + index + offset

'movl 12 (%eax,%edx,4),b%ebx
ebx = Mem[edx*4 + eax + 12]

CS 61C L39 x86 (16) Wawrzynek Spring 2006 © UCB

Branch in 80x86

° Rather than compare registers, x86 uses
special 1-bit registers called “condition
codes” that are set as a side-effect of ALU
operations

+ S - Sign Bit
+Z - Zero (result is all 0)
+ C - Carry Out

* P - Parity: set to 1 if even number of ones in
rightmost 8 bits of operation

° Conditional Branch instructions then use
condition flags for all comparisons: <, <=, >,

» Conditional execution and condition codes are
also present in some RISC architectures, such
as the ARM ISA

CS 61C L39 x86 (17) Wawrzynek Spring 2006 © UCB

Branch: MIPS vs. 80x86

*beq °(cmpl;) je
if previous operation
set condition code, then
cmpl unnecessary

°bne °(cmpl;) jne
°slt; beq °(cmpl;) jlt
°slt; bne °(cmpl;) jge
°Jjal °call

°Jr $31 ‘ret

CS 61C L39 x86 (18) Wawrzynek Spring 2006 © UCB

While in C/Assembly: 80x86
C while (save[i]==k)
i=1i+73;

(1,,k: $edx, $esi, $ebx)
leal -400 (%ebp) , 3eax
.Loop: cmpl %ebx, (%eax,%edx,4)

X jne .Exit

8 addl %esi, %$edx
j .Loop

Exit:

Note: cmpl replaces sll, add, Iw in loop

CS 61C L39 x86 (19) Wawrzynek Spring 2006 © UCB

Unusual features of 80x86

°Memory Stack is part of instruction set

«call places return address onto stack,
increments esp (Mem|[esp]=eip+6; esp+=4),
as well as changing the flow of control

-push places value onto stack, increments esp
- pop gets value from stack, decrements esp

°incl, decl (increment, decrement)
incl %edx # edx = edx + 1

CS 61C L39 x86 (20) Wawrzynek Spring 2006 © UCB

Unusual features of 80x86: Floating Pt.

°Floating point uses a separate stack;
load, push operands, perform operation,
pop result

£fildl (%esp)
fpstack = M[esp],
convert integer to FP
flds -8000048 (%ebp)
push M[ebp-8000048]
fsubp %st,%$st(1)
subtract top 2 elements
fstps -8000048 (%ebp)
M[ebp-8000048] = difference

CS 61C L39 x86 (21) Wawrzynek Spring 2006 © UCB

Conclusion

°Once you’ve learned one RISC instruction set,
easy to pick up the rest

« ARM, Compaq/DEC Alpha, Hitatchi SuperH,
IBM/Motorola PowerPC, Sun SPARC, ...
°Intel 80x86 is a “horse of different color”

+ But still reasonably straightforward, albeit more
complicated

°RISC emphasis: performance, HW simplicity,
compiler targets

°80x86 emphasis: code size and hand coding

+ A decision which was right at the time, but is no longer
really relevant

CS 61C L39 x86 (22) Wawrzynek Spring 2006 © UCB

Announcements:

°Midterm 3:
* Tuesday 5/9, 6:30-9:30, 1 Pimentel

* Format: 45 points (MT1&2 were 30 each)

- 25 ‘)oints on final 1/3 of semester (pipelining
included)

- 20 points on 61c “greatest hits”
Basic C programming concepts,
MIPS programming,

Processor Design (datapath/control),

Synchronous Digital System Desi?n data
movement/Flip-flops, simple CL blocks).

* TA lead review session, 2-4pm Sunday
(5/7), 10 Evans.

CS 61C L39 x86 (23) Wawrzynek Spring 2006 © UCB

Announcements:

°This week schedule:
* Today: “x86” & Course Evaluation

fill out course evaluation - VERY
IMPORTANT

Bring a #2 pencil.
* Friday: Alternatives to Processors: FPGAs

°Next Week:

- Monday: course wrap up, review
* Tuesday evening exam
- Grades out end of next week.

CS 61C L39 x86 (24) Wawrzynek Spring 2006 © UCB

Extra Slides:
micro-architecture and
implementation details

CS 61C L39 x86 (25) Wawrzynek Spring 2006 © UCB

Intel Internals

°Hardware below instruction set called
"microarchitecture”

°Pentium Pro, Pentium Il, Celeron,
Pentium lll are all based on same
microarchitecture (1994)

- Improved clock rate (from process
shrinks), increased cache size, some
minor design tweaks

°AMD Athlon/Duron is a different beast
°Pentium 4 had new microarchitecture
°Pentium M based on Pentium 3

CS 61C L39 x86 (26) Wawrzynek Spring 2006 © UCB

Dynamic Scheduling in Pentium Pro, Ii, i

° PPro doesn’t pipeline 80x86 instructions

* Instead, it translates each x86 instruction
into one or more 72 bit "micro-operations” (

uops)

°It takes 1 clock cycle to determine the
length of the x86 instruction + 2 more to
create the uOps

« Most instructions translate into 1-4 uOps

+ The PPro can translate up to 3 instructions
into 5 uOps/cycle if the instructions are

ordered correctly

°10 stage pipeline for micro-operations

CS 61C L39 x86 (27) Wawrzynek Spring 2006 © UCB

Hardware support

_ _ : allow a
instructions to execute in a different
order than they appear in the
instruction stream.

 An instruction waits in a queue until all of its

input operands are ready, then gets executes on
the appropriate “function unit”

°Fetch in-order, execute out-of-order,
cocrlnmlt (change processor state) in
order

* Necessary for precise exceptions if
something goes wrong

- It is necessary to insure that every
instruction after the bad one never executed

CS 61C L39 x86 (28) Wawrzynek Spring 2006 © UCB

Hardware for out of order execution

°Need HW buffer for

results of uhcommitted —
instructions:
Reorder
Fp Buffer
* Reorder buffer can be Op
operand source Queue P Rogs |

+ Once operand v
“commits”, result is \
found in register | Res Stations | | Res Stations |

.
Discard results on I

mispredicted branches
or on exceptions

CS 61C L39 x86 (29) Wawrzynek Spring 2006 © UCB

Dynamic Scheduling in Pentium Pro

Max. instructions issued/clock 3
Max. uOps issued/clock 5
Max. uOps complete exec./clock 5
Max. instr. commited/clock 3
Instructions in reorder buffer 40

2 integer functional units (FU), 1 floating
omt U, 1 branch FU, 1 Load FU, 1 Store

CS 61C L39 x86 (30) Wawrzynek Spring 2006 © UCB

Pentium 4

° Also translates from 80x86 to micro-ops
+ But translates before the Icache

° P4 has better branch predictor, more FUs

+ Overclocked integer ALUs, so 4 integer ALU ops/cycle in the
core

° Clock rates:
« Pentium lll 1 GHz v. Pentium IV 1.5 GHz
+ 10 stage pipeline vs. 20 stage pipeline

° Faster memory bus: 400 MHz v. 133 MHz

° Caches
« Pentium Illl: L11 16KB, L1D 16KB, L2 256 KB
* Pentium 4: L1112 K uOps, L1D 8 KB, L2 256 KB
« AMD Athlon: L11 64KB, L1D 64KB, L2 256 KB
« AMD Duron: L11 64KB, L1D 64KB, L2 64 KB victim cache
- Block size: Plll 32B v. P4 128B

CS 61C L39 x86 (31) Wawrzynek Spring 2006 © UCB

Pentium 4 features

° Multimedia instructions 128 bits wide vs. 64
bits wide => 144 new instructions

* When used by programs??

- Still too short to be attractive compiler targets

- Is a fair amount of compiler lore on compiling to vector
architectures

+ Many of the new instructions are surprisingly slow

°Instruction Cache holds micro-operations vs.
80x86 instructions
* no decode stages of 80x86 on cache hit

- called “trace cache” (TC)

CS 61C L39 x86 (32) Wawrzynek Spring 2006 © UCB

Pentium, Pentium Pro, Pentium 4 Pipeline

Prefelch Decode | Decode Execute Write-back

P5 Microarchitecture

Fetch Fetch | Decode Decode | Decode Rename | ROB Rdd | Rdy/Sch | Dispateh | Execute

P& Microarchitecture

TC Nxt IP TC Fetch Drive Alloc Rename Queue | Schedule

Schedule Schedule | Dispatch | Dispatch | Reg File | Reg File = Execute | Flags BranchCk DCrive

NetBurst Microarchitecture

°Pentium (P5) = 5 stages
Pentium Pro, II, Ill (P6) = 10 stages
Pentium 4 (l\i i3urst) 20 stages

“Pentium 4 (Partially) Previewed,” Microprocessor Report, 8/28/00

CS 61C L39 x86 (33) Wawrzynek Spring 2006 © UCB

Block Diagram of Pentium 4 Microarchitecture

BTB and I-TLB

x86 Instruction Decoder
I

Microcode__ " gxecution Trace Cache — BTB

ROM 11l
| PR Rename and Allocate
I L2
Micro-op Queues Cache
I
Schedulers

L1 Lrerel

FP Reg File Integer Reg File

| 1 ! | B

FMul | FP Move Load || Store | ALUJALU

FAdd | FP Store
MMX
SSE

L1 D-Cache and D-TLB

° BTB = Branch Target Buffer (branch predictor)

° |-TLB = Instruction TLB, Trace Cache = Instruction cache

° RF = Register File; AGU = Address Generation Unit

° "Double pumped ALU" means ALU clock rate 2X => 2X ALU F.U.s

CS 61C L39 x86 (34) Wawrzynek Spring 2006 © UCB

Pentium lll v. Pentium 4 in benchmarks

°PC World magazine, Nov. 20, 2000
* WorldBench 2000 benchmark (business)
* P4 score @ 1.5 GHz: 164 (bigger is better)
*Plll score @ 1.0 GHz: 167
« AMD Althon @ 1.2 GHz: 180
* (Media apps do better on P4 v. PIll)

°P4 has the marketing megahertz, but is
actually down on performance

CS 61C L39 x86 (35) Wawrzynek Spring 2006 © UCB

Why?

°Instruction count is the same for x86
°Clock rates: P4 > Althon > PIil
°How can P4 be slower?

°Time =
Instruction count x CPI x 1/Clock rate

° Average Clocks Per Instruction (CPI?
of P4 must be worse than Althon, PliI

CS 61C L39 x86 (36) Wawrzynek Spring 2006 © UCB

