CS61C — Machine Structures

Lecture 33 - Caches Il

4/14/2006
John Wawrzynek
(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS 61C L33 Caches lll (1) Wawrzynek Spring 2006 © UCB

Review: Why We Use Caches

TOOO, oo T pP:oc
8 “Moorels LaW” 60 A)/yr-
m1 OO ... Processor-Memory
E Performance Gap:
10] (grows 50% / year)
& »—DRAM

: R 7%y,

———————————————————

° 1989 first Intel CPU with cache on chip

° 1998 Pentium lll has two levels of cache on chip

CS 61C L33 Caches lll (2) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (2/3)

°Fully Associative Cache (e.g., 32 B block)
- compare tags in parallel

31 4 0
Cache Tag (27 bits long) [Byte Offset
Cache Tag Valid Cache Data
,@'@". B3] —~[B1 B0
i
——> O i
C. i
>O— K

CS 61C L33 Caches lll (3) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (3/3)

°Benefit of Fully Assoc Cache

* No Conflict Misses (since data can go
anywhere)

°Drawbacks of Fully Assoc Cache

* Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: very expensive!

- Alternatively, use fewer comparisons, but
compare sequentially - too slow!

CS 61C L33 Caches lll (4) Wawrzynek Spring 2006 © UCB

Third Type of Cache Miss

°Capacity Misses

* miss that occurs because the cache has
a limited size

* miss that would not occur if we increase
the size of the cache

- sketchy definition, so just get the general
idea

°This is the primary type of miss for
Fully Associative caches.

CS 61C L33 Caches lll (5) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (1/4)

°Memory address fields:
* Tag: same as before
- Offset: same as before

* Index: points us to the correct “row”
(called a set in this case)

°So what’s the difference?
- each set contains multiple blocks

- once we’ve found correct set, must
compare with all tags in that set to find
our data

CS 61C L33 Caches lll (6) Wawrzynek Spring 2006 © UCB

Set Associative Cache Example

Memory Cache
Address Memory Index
0 0
! 1
1

Here’s a simple 2 way set
associative cache.

cse61C

-
)|

3 Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (2/4)

°Summary:
- cache is direct-mapped w/respect to sets
- each set is fully associative

* basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

CS 61C L33 Caches lll (8) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (3/4)

°Given memory address:
* Find correct set using Index value.

- Compare Tag with all Tag values in the
determined set.

- If a match occurs, hit!, otherwise a miss.

* Finally, use the offset field as usual to
find the desired data within the block.

CS 61C L33 Caches lll (9) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (4/4)

°What’s so great about this?

*even a 2-way set assoc cache avoids a
lot of conflict misses

- hardware cost isn’t that bad: only need N
comparators
°In fact, for a cache with M blocks,
- it’s Direct-Mapped if it’'s 1-way set assoc
«it’s Fully Assoc if it’s M-way set assoc

* so these two are just special cases of the
more general set associative design

CS 61C L33 Caches lll (10) Wawrzynek Spring 2006 © UCB

4-Way Set Associative Cache Circuit

Address
3130---12111098--:3210

I [E]
tag o b &

index

Index V Tag Data V Tag Data V Tag Data V Tag Data

7L

ERED

4-to-1 multiplexor

Hit Data
CS61C L33 ring 2006 © UCB

Block Replacement Policy (2/2)

°If there are any locations with valid bit
off (empty), then usually write the new
block into the first one.

°If all possible locations already have a
valid block, we must pick a
replacement policy: rule by which we
determine which block gets “cached
out” on a miss.

CS 61C L33 Caches lll (12) Wawrzynek Spring 2006 © UCB

Block Replacement Policy: LRU

°LRU (Least Recently Used)

* ldea: cache out block which has been
accessed (read or write) least recently

* Pro: temporal locality = recent past use
implies likely future use: in fact, this is a
very effective policy

- Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

CS 61C L33 Caches lll (13) Wawrzynek Spring 2006 © UCB

Block Replacement Example

°We have a 2-way set associative cache
with a four word tfotal capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0,2,0,1,4,0,2,3,5,4

How many hits and how many misses
will there be for the LRU bloc
replacement policy?

CS 61C L33 Caches lll (14) Wawrzynek Spring 2006 © UCB

Block Replacement Example: LRU 1oc0 1oc 1

°Addresses 0,2,0,1, 4,0, ... set0 (
0: miss, bring into set 0 (loc 0) set1
. . . set 0 0 2
2: miss, bring into set 0 (loc 1) __,, —
0:hit 0 2
T set1
1: miss, bring into set 1 (loc 0) st9 0f 2
set 1 1
4: miss, bring into set 0 (loc 1, replace 2) 5% 0| 4
set1l 1
. set0] O 4
0: hit set1l 1

CS 61C L33 Caches lll (15) Wawrzynek Spring 2006 © UCB

Big Idea

°How to choose between associativity,

block size, replacement policy?

°Design against a performance model

* Minimize: Average Memory Access Time

= Hit Time
+ Miss Penalty x Miss Rate

+ influenced by technology & program

behavior

°Create the illusion of a memory that is
large, cheap, and fast - on average

CS 61C L33 Caches lll (16) Wawrzynek Spring 2006 © UCB

Example

°Assume
+ Hit Time =1 cycle
* Miss rate = 5%
+ Miss penalty = 20 cycles
- Calculate AMAT...

°Avg mem access time
=1+ 0.05x20
=1+ 1cycles
=2 cycles

CS 61C L33 Caches lll (17) Wawrzynek Spring 2006 © UCB

Administrivia

°Do your reading! VM is coming up,
and it’s shown to be hard for students!

°Project 5 out

°Exam
*Wed 4/19, 1 Pimentel 7-9pm

- Covers weeks 6-12 (focus on lecture
material)

* TA Review Monday evening

CS 61C L33 Caches lll (18) Wawrzynek Spring 2006 © UCB

Ways to reduce miss rate

°Larger cache
- limited by cost and technology
- hit time of first level cache < cycle time
°More places in the cache to put each
block of memory — associativity

- fully-associative
- any block any line

* N-way set associated
- N places for each block
- direct map: N=1

CS 61C L33 Caches lll (19) Wawrzynek Spring 2006 © UCB

Improving Miss Penalty

°When caches first became popular, Miss
Penalty ~ 10 processor clock cycles

°Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
=> 200 processor clock cycles!

MEM

Proc {¢—p| [S $,

Nvdd

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

CS 61C L33 Caches Il (20) Wawrzynek Spring 2006 © UCB

Analyzing Multi-level cache hierarchy

|
S)
T
Proc !|)§>
L1 hit ~| L2 hit
time time | | 2 Miss Rate
L2 Miss Penal
L1 Miss Rate

.L1 Miss Penalty
Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty
L1 Miss Penalty =

L2 Hit Time + L2 Miss Rate * L2 Miss Penalty
Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate *

csmm%g!?@(zl-lit Time + L2 Miss Rate * L2 Mis&wrgegsgnagjomw

Typical Scale

°L1
* size: tens of KB
- hit time: complete in one clock cycle
* miss rates: 1-5%
°L2:
* size: hundreds of KB
* hit time: few clock cycles
* miss rates: 10-20%
°L2 miss rate is fraction of L1 misses
that also miss in L2
*why so high?

CS 61C L33 Caches lll (22) Wawrzynek Spring 2006 © UCB

Example: with L2 cache

°Assume
L1 Hit Time =1 cycle
*L1 Miss rate = 5%
+L2 Hit Time =5 cycles
*L2 Miss rate = 15% (% L1 misses that miss)
+ L2 Miss Penalty = 200 cycles

°L1 miss penalty =5 + 0.15 * 200 = 35

°Avg mem access time =1 + 0.05 x 35
= 2.75 cycles

CS 61C L33 Caches Ill (23) Wawrzynek Spring 2006 © UCB

Example: without L2 cache

°Assume
L1 Hit Time =1 cycle
*L1 Miss rate = 5%
- L1 Miss Penalty = 200 cycles

°Avg mem access time =1 + 0.05 x 200
=11 cycles

°4x faster with L2 cache! (2.75 vs. 11)

CS 61C L33 Caches Il (24) Wawrzynek Spring 2006 © UCB

What to do on a write hit?

°Write-through

- update the word in cache block and
corresponding word in memory

°Write-back
- update word in cache block
- allow memory word to be “stale”
=> add ‘dirty’ bit to each block indicating

that memory needs to be updated when
block is replaced

=> OS flushes cache before 1/0...

°Performance trade-offs?

CS 61C L33 Caches Il (25) Wawrzynek Spring 2006 © UCB

Generalized Caching

°We’ve discussed memory caching in

detail. Caching in general shows up
over and over in computer systems

* Filesystem cache

* Web page cache

«- Game Theory databases / tablebases

- Software memoization

* Others?

°Big idea: if something is expensive
but we want to do it repeatedly, do it
once and cache the resulit.

CS 61C L33 Caches Il (26) Wawrzynek Spring 2006 © UCB

An actual CPU -- Early PowerPC

° Cache

- 32 KByte Instructions
and 32 KByte Data L1
caches

- External L2 Cache
interface with integrated
controller and cache
tags supports up to 1

yte external L2 cache

* Dual Memor
Management Units
(MUY

“

ST 000N N T A

° Pipelining

* Superscalar (3
inst/cycle)

+ 6 execution units (2
integer and 1 double
premsmn IEEE floating
point)

E
E
E
-
E

CS 61C L33 Caches lll (27) Wawrzynek Spring 2006 © UCB

And in Conclusion...

°Cache design choices:
- size of cache: speed v. capacity
- direct-mapped v. associative
- for N-way set assoc: choice of N
* block replacement policy
- 2nd Jevel cache?
- 3rd level cache?
* Write through v. write back?

°Use performance model to pick
between choices, depending on
programs, technology, budget, ..

CS 61C L33 Caches Il (29) Wawrzynek Spring 2006 © UCB

