CS61C — Machine Structures

Lecture 32 - Caches Il

4/12/2006
John Wawrzynek
(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS 61C L32 Caches Il (1) Wawrzynek Spring 2006 © UCB

address: hex binan

00 0000
01 0000

DM Cache Review

Assume: 32 Byte Main Memory
(addresses shown to left, memory
contents not shown)

2 Bytes/block = 1 bit for “offset”

[FOFOFRFORFRORFRORFORFORFRORFRORORORORORORORrO]

-
N
PRRRRRRRRRRRRR PR 00000000000
PRRPRRPRRRO00000000RRPRRPRRRRO00
PRRPROO0O0ORRFRRPRPO00O0ORR,LROO0OOR
HFEOOFRHFOOFRHOORHFOOR OO POOR O

CS 61C L32 Caches Il (2) Wawrzynek Spring 2006 © UCB

=2
=]
L

address: hex

ool ol i rloolo ol - o olo o |- o olo o
ook ook ook ool ook o ok o ol oo
oo O O O O O O o O O O O o= o~ o

€S 61C L32 Caches Il (3)

address: hex __ binary

H
I
| -

00100000
01100001
02100010
03100011
04100100
05100101
06100110
07100111
08101000
09101/001
0A 01010
0B 101/011
0C|01j100
0D 101101
OE [01110
0F 01111
10110000
11110001
12110010
13110011
14110100
15110101
1610110
17110111
18111000
191111001
1A 111010
1B 1111011
1C|11j100
1D 111101
1E|11110

111

CS 61C L32 Caches Il (:

=

)

maps to row 0

maps to row 1
maps to row 2
maps to row 3
maps to row 0
maps to row 1
maps to row 2
maps to row 3
maps to row 0
maps to row 1
maps to row 2
maps to row 3
maps to row 0
maps to row 1
maps to row 2

maps to row 3

maps to row 0

maps to row 1
maps to row 2
maps to row 3
maps to row 0
maps to row 1
maps to row 2
maps to row 3
maps to row 0
maps to row 1
maps to row 2
maps to row 3
maps to row 0
maps to row 1
maps to row 2

maps to row 3

0 tag

0 tag
0 tag
0 tag
1 tag
1 tag
1 tag
1 tag
2tag
2tag
2tag
2tag
3 tag
3 tag
3 tag

3 tag

DM Cache Review

Assume: 32 Byte Main Memory
(addresses shown to left)

2 Bytes/block = 1 bit for “offset”

4 blocks in cache = 2 bits for “index”
Slots in cache called:row 0, 1, 2, & 3

Wawrzynek Spring 2006 © UCB

DM Cache Review

Assume: 32 Byte Main Memory
(addresses shown to left)

2 Bytes/block = 1 bit for “offset”

4 blocks in cache = 2 bits for “index”
Slots in cache called:row 0, 1, 2, & 3

5-1-3= 2 bits for “tag”

Wawrzynek Spring 2006 © UCB

[e]

[e]

[e]

cse61C

Accessing data in a direct mapped cache
Ex.: 16KB of data,

direct-mapped,
4 word blocks

Read 4

addresses

= w N R

Memor
on right:

L32 Caches Il (5)

. 0x00000014
. 0x0000001C
. 0x00000034
. 0x00008014

values

Memory

Address (hex)Value of Word

00000010

00000014

00000018

olololo]

0000001C

00000030

00000034

00000038

0000003C

=tel o)

00008010

00008014

00008018

K

0000801C

.oe
Wawrzynek Spring 2006 © UCB

Do an example yourself. What happens?
°Chose from: Cache: Hit, Miss, Miss w. replace

Values returned: a.,b,c,d, e, ..., kI

°Read address 0x00000030 ?

000000000000000000 0000000011 o0O0O0O
°Read address 0x0000001c ?

000000000000000000 0000000001 1100
Indgglidrag 0x0-3 O0x4-7 O0x8-b Oxc-f

0 [0

1f 2 i i k |

2 [0

3 [1] 0 e T g h

4 [0

5 [0

6 [0

7 |0

€S 61C L32 Caches Il (6)

Wawrzynek Spring 2006 © UCB

Answers
°0x00000030 a hit Memory

Index = 3, Tag matches, Address Value of Word
Offset =0, value=¢e

00000010

a
°0x0000001c a miss 00000014 b
. 00000018 c
Index = 1, Tag mismatch, 0000001c d
so replace from memory,

Offset = Oxc, value = d 0006'0030 =
i f
°Since reads, values 888888%3 a
must = memory values 0000003c¢ h
whether or not cached: o
00008010 n

+ 0x00000030 =e 00008014
- 00000001 ¢ = d 00008018 I—

CS 61C L32 Caches Il (7) Wawrzymeek Spring 2006 © UCB

Block Size Tradeoff (1/3)

°Benefits of Larger Block Size

- Spatial Locality: if we access a given
word, we’re likely to access other
nearby words soon

* Very applicable with Stored-Program
Concept: if we execute a given
instruction, it’s likely that we’ll execute
the next few as well

- Works nicely in sequential access to
arrays and structs too

CS 61C L32 Caches Il (8) Wawrzynek Spring 2006 © UCB

Block Size Tradeoff (2/3)

°Drawbacks of Larger Block Size

+ Larger block size means larger miss penalty

- onh a miss, takes longer time to load a new block from
next level

* If block size is too big relative to cache size,
then there are too few blocks

- Result: miss rate goes up

°In general, try to minimize

Average Memory Access Time (AMAT)
= Hit Time + Miss Penalty x Miss Rate

CS 61C L32 Caches Il (9) Wawrzynek Spring 2006 © UCB

Block Size Tradeoff (3/3)

°Hit Time = time to find and retrieve
data from current level cache

°Miss Penalty = average time to retrieve
data on a current level miss (includes
the possibility of misses on
successive levels of memory
hierarchy)

°Hit Rate = % of requests that are found
in current level cache

°Miss Rate =1 - Hit Rate

CS 61C L32 Caches Il (10) Wawrzynek Spring 2006 © UCB

Extreme Example: One Big Block

Valid Bit Tag Cache Data
O | B3TB2]BIB O]
°Cache Size = 4 bytes Block Size = 4 bytes

* Only ONE entry in the cache!

°If item accessed, likely accessed again soon
+ But unlikely will be accessed again immediately!

°The next access will likely to be a miss again

+ Continually loading data into the cache but
discard data (force out) before use it again

* Nightmare for cache designer: Ping Pong Effect

CS 61C L32 Caches Il (11) Wawrzynek Spring 2006 © UCB

Block Size Tradeoff Conclusions

Miss Miss , _ _
Penalty Rate EXploits Spatial Locality
Fewer blocks:
/ compromises
> temporal locality
Block Size Block;Size
Average Increased Miss Penalty
Access & Miss Rate
Time

Block Size

CS 61C L32 Caches Il (12) Wawrzynek Spring 2006 © UCB

Administrivia
°Regraded Midterms handout after
class.
°Exam 2 next Wednesday
«7-9pm, Pimentel.

- Covers through pipelining (last
week).

- Special review session Monday
evening.

CS 61C L32 Caches Il (13) Wawrzynek Spring 2006 © UCB

Types of Cache Misses (1/2)

°“Three Cs” Model of Misses

°1st C: Compulsory Misses
- occur when a program is first started

- cache does not contain any of that
program’s data yet, so misses are bound
to occur

- can’t be avoided easily, so won’t focus
on these in this course

CS 61C L32 Caches Il (14) Wawrzynek Spring 2006 © UCB

Types of Cache Misses (2/2)

°2nd C: Conflict Misses

* miss that occurs because two distinct memory
addresses map to the same cache location

+ two blocks (which happen to map to the same
location) can keep overwriting each other

* big problem in direct-mapped caches
* how do we lessen the effect of these?

° Dealing with Conflict Misses

+ Solution 1: Make the cache size bigger
Fails at some point

« Solution 2: Multiple distinct blocks can fit in the
same cache Index?

CS 61C L32 Caches Il (15) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (1/3)

°Memory address fields:
+ Tag: same as before
- Offset: same as before
* Index: non-existant

°What does this mean?

*no “rows”: any block can go anywhere in
the cache

- must compare with all tags in entire cache
to see if data is there

CS 61C L32 Caches Il (16) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (2/3)

°Fully Associative Cache (e.g., 32 B block)
- compare tags in parallel

31 4 0
Cache Tag (27 bits long) [Byte Offset
Cache Tag Valid Cache Data
,@'@". B3] —~[B1 B0
i
——> O i
C. i
>O— K

CS 61C L32 Caches Il (17) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (3/3)

°Benefit of Fully Assoc Cache

* No Conflict Misses (since data can go
anywhere)

°Drawbacks of Fully Assoc Cache

* Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: very expensive!

CS 61C L32 Caches Il (18) Wawrzynek Spring 2006 © UCB

Third Type of Cache Miss

°Capacity Misses

* miss that occurs because the cache has
a limited size

* miss that would not occur if we increase
the size of the cache

- sketchy definition, so just get the general
idea

°This is the primary type of miss for
Fully Associative caches.

CS 61C L32 Caches Il (19) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (1/4)

°Memory address fields:
+ Tag: same as before
* Offset: same as before

* Index: points us to the correct “row”
(called a set in this case)

°So what’s the difference?
- each set contains multiple blocks

- once we’ve found correct set, must
compare with all tags in that set to find
our data

CS 61C L32 Caches Il (20) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (2/4)

°Summary:
- cache is direct-mapped w/respect to sets
- each set is fully associative

* basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

CS 61C L32 Caches Il (21) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (3/4)

°Given memory address:
* Find correct set using Index value.

- Compare Tag with all Tag values in the
determined set.

- If a match occurs, hit!, otherwise a miss.

* Finally, use the offset field as usual to
find the desired data within the block.

CS 61C L32 Caches Il (22) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (4/4)

°What’s so great about this?

- even a 2-way set assoc cache avoids a
lot of conflict misses

- hardware cost isn’t that bad: only need N
comparators
°In fact, for a cache with M blocks,
- it’s Direct-Mapped if it’'s 1-way set assoc
«it’s Fully Assoc if it’s M-way set assoc

+ so these two are just special cases of the
more general set associative design

CS 61C L32 Caches Il (23) Wawrzynek Spring 2006 © UCB

Associative Cache Example

Memory Cache
Address Memory Index
0 0
1 1
1

Here’s a simple 2 way set
associative cache.

cse61C

-
|

2 Wawrzynek Spring 2006 © UCB

Set Associative Cache Example
Cache 4 Byte Cache

Memory
Address Memory Index
0 ——
1
2
3
4
5
6
7
5 ° Recall this is how a
A simple direct mapped
1C3 cache looked.
D ° This is also a 1-way set-
BE! associative cache!

Cache Things to Remember

°Caches are NOT mandatory:

* Processor performs arithmetic
* Memory stores data
» Caches simply make data transfers go faster

°Each level of Memory Hiererarchy
subset of next higher level

°Caches speed up due to temporal locality:
store data used recently

°Block size > 1 wd spatial locality speedup:
Store words next to the ones used recently

°Cache design choices:
* size of cache: speed v. capacity

* N-way set assoc: choice of N (direct-mﬂ)ped,
fully-associative just special cases for N)

CS 61C L32 Caches Il (26) Wawrzynek Spring 2006 © UCB

