
CS 61C L32 Caches II (1) Wawrzynek Spring 2006 © UCB

4/12/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 32 - Caches II

CS 61C L32 Caches II (2) Wawrzynek Spring 2006 © UCB

DM Cache Review 00 00000
01 00001
02 00010
03 00011
04 00100
05 00101
06 00110
07 00111
08 01000
09 01001
0A 01010
0B 01011
0C 01100
0D 01101
0E 01110
0F 01111
10 10000
11 10001
12 10010
13 10011
14 10100
15 10101
16 10110
17 10111
18 11000
19 11001
1A 11010
1B 11011
1C 11100
1D 11101
1E 11110
1F 11111

2 Bytes/block ⇒ 1 bit for “offset”

Assume: 32 Byte Main Memory
(addresses shown to left, memory
 contents not shown)

address: hex binary

CS 61C L32 Caches II (3) Wawrzynek Spring 2006 © UCB

DM Cache Review 00 00000
01 00001
02 00010
03 00011
04 00100
05 00101
06 00110
07 00111
08 01000
09 01001
0A 01010
0B 01011
0C 01100
0D 01101
0E 01110
0F 01111
10 10000
11 10001
12 10010
13 10011
14 10100
15 10101
16 10110
17 10111
18 11000
19 11001
1A 11010
1B 11011
1C 11100
1D 11101
1E 11110
1F 11111

2 Bytes/block ⇒ 1 bit for “offset”

4 blocks in cache ⇒ 2 bits for “index”
Slots in cache called: row 0, 1, 2, & 3

Assume: 32 Byte Main Memory
(addresses shown to left)

address: hex binary

maps to row 0

maps to row 1

maps to row 2

maps to row 3

maps to row 0

maps to row 1

maps to row 2

maps to row 3

maps to row 0

maps to row 1

maps to row 2

maps to row 3

maps to row 0

maps to row 1

maps to row 2

maps to row 3

CS 61C L32 Caches II (4) Wawrzynek Spring 2006 © UCB

DM Cache Review 00 00000
01 00001
02 00010
03 00011
04 00100
05 00101
06 00110
07 00111
08 01000
09 01001
0A 01010
0B 01011
0C 01100
0D 01101
0E 01110
0F 01111
10 10000
11 10001
12 10010
13 10011
14 10100
15 10101
16 10110
17 10111
18 11000
19 11001
1A 11010
1B 11011
1C 11100
1D 11101
1E 11110
1F 11111

2 Bytes/block ⇒ 1 bit for “offset”

4 blocks in cache ⇒ 2 bits for “index”
Slots in cache called: row 0, 1, 2, & 3

5 - 1 - 3 ⇒ 2 bits for “tag”

Assume: 32 Byte Main Memory
(addresses shown to left)

address: hex binary

maps to row 0

maps to row 1

maps to row 2

maps to row 3

maps to row 0

maps to row 1

maps to row 2

maps to row 3

maps to row 0

maps to row 1

maps to row 2

maps to row 3

maps to row 0

maps to row 1

maps to row 2

maps to row 3

0 tag

0 tag

0 tag

0 tag

1 tag

1 tag

1 tag

1 tag

2 tag

2 tag

2 tag

2 tag

3 tag

3 tag

3 tag

3 tag

CS 61C L32 Caches II (5) Wawrzynek Spring 2006 © UCB

Accessing data in a direct mapped cache
° Ex.: 16KB of data,

direct-mapped,
4 word blocks

° Read 4
addresses

1. 0x00000014
2. 0x0000001C
3. 0x00000034
4. 0x00008014

° Memory values
on right:

Address (hex)Value of Word
Memory

00000010
00000014
00000018
0000001C

a
b
c
d

... ...
00000030
00000034
00000038
0000003C

e
f
g
h

00008010
00008014
00008018
0000801C

i
j
k
l

... ...

... ...

... ...

CS 61C L32 Caches II (6) Wawrzynek Spring 2006 © UCB

Do an example yourself. What happens?
° Chose from: Cache: Hit, Miss, Miss w. replace

 Values returned: a ,b, c, d, e, ..., k, l
° Read address 0x00000030 ?
000000000000000000 0000000011 0000

° Read address 0x0000001c ?
 000000000000000000 0000000001 1100

...

ValidTag 0x0-3 0x4-7 0x8-b 0xc-f
0
1
2
3
4
5
6
7...

1 2 i j k l

1 0 e f g h

Index
0

0

0
0
0
0

Cache

CS 61C L32 Caches II (7) Wawrzynek Spring 2006 © UCB

Answers
°0x00000030 a hit

Index = 3, Tag matches,
Offset = 0, value = e

°0x0000001c a miss
Index = 1, Tag mismatch,
so replace from memory,
Offset = 0xc, value = d

°Since reads, values
must = memory values
whether or not cached:

• 0x00000030 = e
• 0x0000001c = d

Address Value of Word
Memory

00000010
00000014
00000018
0000001c

a
b
c
d

... ...
00000030
00000034
00000038
0000003c

e
f
g
h

00008010
00008014
00008018
0000801c

i
j
k
l

... ...

... ...

... ...

CS 61C L32 Caches II (8) Wawrzynek Spring 2006 © UCB

Block Size Tradeoff (1/3)
°Benefits of Larger Block Size

• Spatial Locality: if we access a given
word, we’re likely to access other
nearby words soon

• Very applicable with Stored-Program
Concept: if we execute a given
instruction, it’s likely that we’ll execute
the next few as well

• Works nicely in sequential access to
arrays and structs too

CS 61C L32 Caches II (9) Wawrzynek Spring 2006 © UCB

Block Size Tradeoff (2/3)
° Drawbacks of Larger Block Size

• Larger block size means larger miss penalty
- on a miss, takes longer time to load a new block from

next level
• If block size is too big relative to cache size,

then there are too few blocks
- Result: miss rate goes up

° In general, try to minimize

Average Memory Access Time (AMAT)
= Hit Time + Miss Penalty x Miss Rate

CS 61C L32 Caches II (10) Wawrzynek Spring 2006 © UCB

Block Size Tradeoff (3/3)

°Hit Time = time to find and retrieve
data from current level cache

°Miss Penalty = average time to retrieve
data on a current level miss (includes
the possibility of misses on
successive levels of memory
hierarchy)

°Hit Rate = % of requests that are found
in current level cache

°Miss Rate = 1 - Hit Rate

CS 61C L32 Caches II (11) Wawrzynek Spring 2006 © UCB

Extreme Example: One Big Block

°Cache Size = 4 bytes Block Size = 4 bytes
• Only ONE entry in the cache!

° If item accessed, likely accessed again soon
• But unlikely will be accessed again immediately!

°The next access will likely to be a miss again
• Continually loading data into the cache but
discard data (force out) before use it again

• Nightmare for cache designer: Ping Pong Effect

 Cache DataValid Bit
B 0B 1B 3

Tag
B 2

CS 61C L32 Caches II (12) Wawrzynek Spring 2006 © UCB

Block Size Tradeoff Conclusions
Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access
Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size

CS 61C L32 Caches II (13) Wawrzynek Spring 2006 © UCB

Administrivia

°Regraded Midterms handout after
class.

°Exam 2 next Wednesday
•7-9pm, Pimentel.
•Covers through pipelining (last
week).

•Special review session Monday
evening.

CS 61C L32 Caches II (14) Wawrzynek Spring 2006 © UCB

Types of Cache Misses (1/2)

°“Three Cs” Model of Misses
°1st C: Compulsory Misses

• occur when a program is first started
• cache does not contain any of that
program’s data yet, so misses are bound
to occur

• can’t be avoided easily, so won’t focus
on these in this course

CS 61C L32 Caches II (15) Wawrzynek Spring 2006 © UCB

Types of Cache Misses (2/2)

° 2nd C: Conflict Misses
• miss that occurs because two distinct memory

addresses map to the same cache location
• two blocks (which happen to map to the same

location) can keep overwriting each other
• big problem in direct-mapped caches
• how do we lessen the effect of these?

° Dealing with Conflict Misses
• Solution 1: Make the cache size bigger

- Fails at some point
• Solution 2: Multiple distinct blocks can fit in the

same cache Index?

CS 61C L32 Caches II (16) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (1/3)

°Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: non-existant

°What does this mean?
• no “rows”: any block can go anywhere in
the cache

• must compare with all tags in entire cache
to see if data is there

CS 61C L32 Caches II (17) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (2/3)
°Fully Associative Cache (e.g., 32 B block)

• compare tags in parallel

Byte Offset

:

 Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

 Cache Tag
=

=
=

=

=
:

CS 61C L32 Caches II (18) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (3/3)

°Benefit of Fully Assoc Cache
• No Conflict Misses (since data can go
anywhere)

°Drawbacks of Fully Assoc Cache
• Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: very expensive!

CS 61C L32 Caches II (19) Wawrzynek Spring 2006 © UCB

Third Type of Cache Miss

°Capacity Misses
• miss that occurs because the cache has
a limited size

• miss that would not occur if we increase
the size of the cache

• sketchy definition, so just get the general
idea

°This is the primary type of miss for
Fully Associative caches.

CS 61C L32 Caches II (20) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (1/4)

°Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct “row”
(called a set in this case)

°So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data

CS 61C L32 Caches II (21) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (2/4)

°Summary:
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

CS 61C L32 Caches II (22) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (3/4)

°Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the
determined set.

• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to
find the desired data within the block.

CS 61C L32 Caches II (23) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (4/4)

°What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need N
comparators

° In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of the
more general set associative design

CS 61C L32 Caches II (24) Wawrzynek Spring 2006 © UCB

Associative Cache Example

° Here’s a simple 2 way set
associative cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

CS 61C L32 Caches II (25) Wawrzynek Spring 2006 © UCB

Set Associative Cache Example

° Recall this is how a
simple direct mapped
cache looked.

° This is also a 1-way set-
associative cache!

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte CacheCache
Index

0
1
2
3

CS 61C L32 Caches II (26) Wawrzynek Spring 2006 © UCB

Cache Things to Remember
° Caches are NOT mandatory:

• Processor performs arithmetic
• Memory stores data
• Caches simply make data transfers go faster

° Each level of Memory Hiererarchy
subset of next higher level

° Caches speed up due to temporal locality:
store data used recently

° Block size > 1 wd spatial locality speedup:
Store words next to the ones used recently

° Cache design choices:
• size of cache: speed v. capacity
• N-way set assoc: choice of N (direct-mapped,

fully-associative just special cases for N)

