CS61C — Machine Structures

Lecture 19 - Running a Program Il
aka Compiling, Assembling, Linking, Loading

3/3/2006
John Wawrzynek
(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS 61C L19 Running a Program Il (1) Wawrzynek Spring 2006 © UCB

Review

C program: foo.c
Compiler

[Assembly program: foo. s
Assembler

Object(mach lang module): foo.o

CS 61C L19 Running a Program Il (2) Wawrzynek Spring 2006 © UCB

Object File Format (review)

° object file header: size and position of the other
pieces of the object file

° text segment: the machine code

° data se?_ment: binary representation of the data in the
source file

° relocation information: identifies lines of code that
nheed to be “handled”

° symbol table: list of this file’s labels and data that can
be referenced

° debugging information

° A standard format is ELF (except MS)
http://www.skyfree.org/linux/references/ELF_Format.pdf

CS 61C L19 Running a Program Il (3) Wawrzynek Spring 2006 © UCB

Where Are We Now?

Linker :+——Mib.o

[Executable(mach Tang pgm): a.out

Loader

[Memory
CS 61C L19 Running a Program Il (4)

Wawrzynek Spring 2006 © UCB

CS 61C L19 Running a Program Il (5)

CS 61C L19 Running a Program Il (6)

Linker (1/3)

°Ingut: Object Code files, information
tables (e.g., foo.0,1libc. o for MIPS)

°Qutput: Executable Code
(e.g., a.out for MIPS)

°Combines several object (.o) files into
a single executable (“linking”)

°Enable Separate Compilation of files

- Changes to one file do not require
recompilation of whole program
- Windows NT source is >40 M lines of code!

- Old name “Link Editor” from editing the
“links” in jump and link instructions

Wawrzynek Spring 2006 © UCB

Linker (2/3)

o file 1
text 1
data 1 a.out
: Relocated text 1
info 1

Relocated text 2
o file 2 Relocated data 1
text 2 Relocated data 2
data 2
info 2

Wawrzynek Spring 2006 © UCB

Linker (3/3)

°Step 1: Take text segment from each
.0 file and put them together.

°Step 2: Take data segment from each
.o file, put them together, and
concatenate this onto end of text
segments.

°Step 3: Resolve References

- Go through Relocation Table and handle
each entry

* That is, fill in all absolute addresses

CS 61C L19 Running a Program Il (7) Wawrzynek Spring 2006 © UCB

Four Types of Addresses we’ll discuss

°PC-Relative Addressing (beqg, bne):
never relocate

° Absolute Address (j, jal): always
relocate

°External Reference (usually jal):
always relocate

°Data Reference (often 1ui and ori):
always relocate

CS 61C L19 Running a Program Il (8) Wawrzynek Spring 2006 © UCB

Absolute Addresses in MIPS

°Which instructions need relocation
editing?

°J-format: jump, jump and link

j/jal XXXXX

°Loads and stores to variables in static
area, relative to global pointer

lw/sw| S$gp $x address
°What about conditional branches?
beq/bne| $rs Srt address

°PC-relative addressing preserved even
if code moves

CS 61C L19 Running a Program Il (9) Wawrzynek Spring 2006 © UCB

Resolving References (1/2)

°Linker assumes first word of first text
segment is at address 0x00000000.

(More on this later when we study “virtual
memory”’)
°Linker knows:
* length of each text and data segment
- ordering of text and data segments

°Linker calculates:

- absolute address of each label to be
jumped to (internal or external) and each
piece of data being referenced

CS 61C L19 Running a Program Il (10) Wawrzynek Spring 2006 © UCB

Resolving References (2/2)

°To resolve references:

- search for reference (data or label) in all
“user” symbol tables

- if not found, search library files
(for example, for printf)

- once absolute address is determined, fill
in the machine code appropriately

°Output of linker: executable file
containing text and data (plus header)

CS 61C L19 Running a Program Il (11) Wawrzynek Spring 2006 © UCB

Static vs Dynamically linked libraries

°What we’ve described is the traditional
way: “statically-linked” approach

* The library is now part of the executable,
so if the library updates, we don’t get the
fix (have to recompile if we have source)

* It includes the entire library even if not all
of it will be used.

- Executable is self-contained.

°An alternative is dynamically linked
libraries (DLL), common on Windows &
UNIX platforms

CS 61C L19 Running a Program Il (12) Wawrzynek Spring 2006 © UCB

Dynamically linked libraries

This does add quite a bit of complexity to the
compiler, linker, and operating system. However,
provides many benefits:

°Space/time savings
- Storing a program requires less disk space
- Sending a program requires less time
- Executing two programs requires less
memory (if they share a library)
°Upgrades

* By replacing one file (libXYZ.so0), you upgrade
every program that uses library "XYZ”

CS 61C L19 Running a Program Il (13) Wawrzynek Spring 2006 © UCB

Dynamically linked libraries

° The prevailing approach to dynamic
linking uses machine code as the
“lowest common denominator”

* the linker does not use information about
how the program or library was compiled
i.e., what compiler or language)

- this can be described as "linking at the
machine code level”

* This isn't the only way to do it...

CS 61C L19 Running a Program Il (14) Wawrzynek Spring 2006 © UCB

Administrivia...

° Exam Regrade requests must be in writing.

+ Attach a written cover-sheet with your exam,
explaining your concern.

* Turn-in in class, no later than Monday.

° Remember to work on project 3: MIPS
instruction interpreter.

°Impending Grade Freeze!
+ HW 1-6, Project 1&2 grades must be settled before

Spring break.
+ Use glookup to verify your grades.

CS 61C L19 Running a Program Il (15)

Where Are We Now?

CS 61C L19 Running a Program Il (16)

Loader

[Memory

Wawrzynek Spring 2006 © UCB

Wawrzynek Spring 2006 © UCB

Loader (1/3)

°Input: Executable Code
(e.g., a.out for MIPS)

°Qutput: (program is run)
°Executable files are stored on disk.

°When one is run, loader’s job is to
load it into memory and start it
running.

°In reality, loader is the operating
system (OS)

- loading is one of the OS tasks

CS 61C L19 Running a Program Il (17) Wawrzynek Spring 2006 © UCB

Loader (2/3)
°So what does a loader do?

°Reads executable file’s header to
determine size of text and data
segments

°Creates new address space for
program large enough to hold text and
data segments, along with a stack
segment

°Copies instructions and data from
executable file into the new address
space

CS 61C L19 Running a Program Il (18) Wawrzynek Spring 2006 © UCB

Loader (3/3)

°Copies arguments passed to the
program onto the stack

°Initializes machine registers

* Most registers cleared, but stack pointer
assigned address of 1st free stack
location

°Jumps to start-up routine that copies
program’s arguments from stack to
registers and sets the PC

- If main routine returns, start-up routine
terminates program with the exit system
call

CS 61C L19 Running a Program Il (19) Wawrzynek Spring 2006 © UCB

Example: C = Asm = Obj= Exe = Run
C Program Source Code: prog.c

#include <stdio.h>
int main (int argc, char *argv[]) {
int i, sum = 0;

for (i = 0; i <= 100; i++)
sum = sum + i * i;

printf ("The sum from 0 .. 100 is %d\n",
sum) ;

“printf” lives in “libc”

CS 61C L19 Running a Program Il (20) Wawrzynek Spring 2006 © UCB

Compilation: MAL

.text

.align 2

.globl main
main:

subu $sp, $sp, 32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24 (S$sp)
sw $0, 28(S$sp)
loop:

lw $t6, 28(S$sp)
mul $t7, $t6,$t6
lw $t8, 24 ($sp)
addu $t9,$t8,5t7
sw $t9, 24 (S$sp)

CS 61C L19 Running a Program Il (21)

Compilation: MAL

.text

.align 2

.globl main
main:

subu S$sp,$sp,32
sw $ra, 20($sp)
sd $a0l0, 32(S$sp)
sw $0, 24 (S$sp)
sw $0, 28(S$sp)
loop:

lw $t6, 28(S$sp)
mul St7, $t6,$t6
lw $t8, 24 ($sp)
addu $t9,$t8,5t7
sw $t9, 24 (S$sp)

CS 61C L19 Running a Program Il (22)

addu $t0, $t6, 1
sw $t0, 28(S$sp)
ble $t0,100, loop
la $a0, str

lw $al, 24 (S$sp)
jal printf

move $v0, $0

lw $ra, 20(S$sp)
addiu $sp, $sp,32

jr Sra Where are

.dat_:a 7 pseudo-

.align O jnstructions?
str:

.asciiz "The sum

from 0 .. 100 is

%d\n"

Wawrzynek Spring 2006 © UCB

addu $t0, $t6, 1
sw $t0, 28 ($sp)
ble $t0,100, loop
la $a0, str

lw $al, 24 ($sp)
jal printf

move Sv0, SO

lw $ra, 20($sp)
addiu $sp, $sp, 32
jr $ra 7 pseudo-
.data instructions
.align O underlined

str:

.asciiz "The sum
from 0 .. 100 is
sd\n"

Wawrzynek Spring 2006 © UCB

00

Assembly step 1:
‘Remove pseudoinstructions, assign addresses
addiu $29,$29,-32 |30 addiu $8,%$14, 1

04
08

SW $31,20($29) |34 sw $8,28($29)
SwW $4, 32($29) (38 slti $1,$8, 101

Oc

sSwW $5, 36(529) |3c bne $1,50, loop

10
14

SwW $0, 24($29) 40 1lui $4, 1.str
swW $0, 28($29) |44 ori $4,54,r.str

18 1w $14, 28($29) 48 1w $5,24 ($29)
lc multu $14, $14 4c jal printf

20 mflo _$15 50 add $2, $0, SO
24 1w $24, 24($29) 54 1w $31,20($29)
28 addu $25,$24,$15 58 addiu $29,$29,32
2c sw $25, 24($29) |5¢c jr $31

CS 61C L19 Running a Program Il (23) Wawrzynek Spring 2006 © UCB

Assembly step 2
Create relocation table and symbol table
°Symbol Table

Label address (in module) type
main: 0x00000000 global text
loop: 0x00000018 1local text
str: 0x00000000 1local data

°Relocation Information

Address Instr. type Dependency
0x00000040 1lui l.str
0x00000044 ori r.str

0x0000004c jal printf

CS 61C L19 Running a Program Il (24) Wawrzynek Spring 2006 © UCB

Assembly step 3

*Resolve local PC-relative labels

00 addiu $29,$29,-32 |30 addiu $8,$14, 1
04 sw $31,20($29) | 34 sw $8,28 ($29)
08 sw $4, 32($29) 38 slti $1,$8, 101
Oc sw $5, 36($29) | 3c bne $1,$0, -10
10 sw $0, 24(%$29) |40 lui $4, l.str
14 sw $0, 28($29) 44 ori $4,$4,r.str

18 1w $14, 28($29) |48 1w $5,24($29)
lc multu $14, $14 4c jal printf
20 mflo $15 50 add $2, $0, $O

24 1w $24, 24($29) 54 1w $31,20($29)
28 addu $25,$24,$15 |58 addiu $29,$29,32
2c sw $25, 24($29) 5c¢ jr $31

CS 61C L19 Running a Program Il (25) Wawrzynek Spring 2006 © UCB

Assembly step 4

°Generate object (.0) file:

* Output binary representation for
- ext segment (instructions),
- data segment (data),
- symbol and relocation tables.

* Using dummy “placeholders” for
unresolved absolute and external
references.

CS 61C L19 Running a Program Il (26) Wawrzynek Spring 2006 © UCB

Text segment in object file

O 0000000 HHHOOHHOOOOOOOOH
O O0O0O0O0O0O0O0O0O0O0O0OHOHOOOOOOOOO
Or1O0O-HOHHOOOHHOOHOOOHOHOOO
OO0O0OrHHHHHOOHOOOHOOHOOOHO
OrHOOH-HHHAH-HOOA-HOHHOOOOHOOO
HOHHOOOOOOHOOHHOOOHOOHO ™
—HOOOOOOOOOHOOOHOOOHOOOOO
—HOOOOOOOOOOOOOHOOOHOOOOO
HOOOOOOOOOOOOOHOOOOOOOOO
HOOOOOOOOOOOOOHOOOOOOOOO
—HOOOOOOOOOOOOOHOOOOOOOOO
—HOOOOOOOOOOOHHHOOOOOOOOO
—HOOOOOOOOOOOHOHOOOOOOOOH
—HOOOOOOOOOOOHOHOOOOOOOOO
—HOOOOOOOOOOOHHHOOOOOOOOO
—HOOOOOOOOOOOOHHOOOOOOOOO
Hr1OHOOOOOOHOOHOHOHOOHHOO
Or10000HOHOOOOHOOOOOOHOOO
HrdHHOOHOHOOOOHOOHHOOHHOO
OO0 OOHHHHOHOHOHOOOOHHOO
Hr1OO0OOOOHOOOOOOOHOOHOHHOO
A A A A OO O HOOHHO HOOHHHO
OO0O0O0O0O0O0O0OHHOOOOOOOOOOOOHO
el A A A A A A A O HO OO HO HOOHHHO
A A A A A A A A A O HOHO HO O HHHO
A A A A O OO HOHOHO HOOHHHO
A A A A A O HOHOOHHHAHHAAHAHO O
OO0 100O0-H{H11O0O-HOOO
OO0O0O0O0O0O0O0O0O0O0O0O0O0OHOHOOOOOOO
A A HOOOHHHOOOHHOOHO-HOO
[e]lololololelololelo]lololololololololololelolole)
OO0 0+-HOOOHOHOO-HOOO

O VO VO VO VO VO U
OCOOOHHHHANNNNMNMMMS I L LN
[elola)
[elola)
[elola)
O 0000000000000 O0O0O0O0O00O0O000

MR KRR NNXXXXXXXXXNXXXXNXNN
0000000000000 00000000000

Wawrzynek Spring 2006 © UCB
Wawrzynek Spring 2006 © UCB

l.str
r.str
printf

Instr. Type Dependency

0x00000000
0x00000018
0x10000430
0x000003b0
lui
ori
jal

Address

 Label
main:
loop:
printf:

* Address
0x00000040
0x00000044
0x0000004c

CS 61C L19 Running a Program Il (28)

°Modify & merge symbol and relocation tables
str:

° Create absolute memory addresses
°Symbol Table

°Merge text/data segments

Link step 1: combine prog.o, libc.o
° Relocation Information

CS 61C L19 Running a Program Il (27)

Link step 2:

‘Edit Addresses in relocation table (show in
TAL for clarity, but done in binary.)

00 addiu $29,$29,-32 |30 addiu $8,$14, 1
04 sw $31,20($29) |34 sw $8,28($29)
08 sw $4, 32($29) 38 slti $1,$8, 101
Oc sw $5, 36($29) 3c bne $1,$0, -10
10 sw $0, 24($29) 40 lui $4, 4096

14 sw $0, 28($29) 44 ori $4,$4,1072

18 1w $14, 28($29) |48 1w $5,24($29)
lc multu $14, $14 4c jal 812
20 mflo $15 50 add $2, $0, $O

24 1w $24, 24($29) 54 1w $31,20($29)
28 addu $25,$24,$15 58 addiu $29,$29,32
2c sw $25, 24($29) |5¢c jr $31

CS 61C L19 Running a Program Il (29) Wawrzynek Spring 2006 © UCB

Link step 3:

° Output executable of merged modules.
+ Single text (instruction) segment
+ Single data segment
+ Header detailing size of each segment

°NOTE:

* The preceeding example was a much simplified
version of how ELF and other standard formats
work, meant only to demonstrate the basic
principles.

CS 61C L19 Running a Program Il (30) Wawrzynek Spring 2006 © UCB

Things to Remember (1/3)
[C program: foo.c
Compiler

Assembly program: foo.s
Assembler

[Object(mach Tang module): foo.o

Linker :+——Mib.o

[Executable(mach Tang pgm): a.out

Loader

CS 61C L19 Running a Program Il (31) | y Wawrzynek Spring 2006 © UCB

Things to Remember (2/3)

°Compiler converts a single HLL file into a
single assembly language file.

° Assembler removes ;t)seudoinstructions,
converts what it can to machine language,
and creates a checklist for the linkef]
(relocation table). This changes each .s file
into a .o file.

* Does 2 passes to resolve addresses, handling
internal forward references

°Linker combines several .o files and
resolves absolute addresses.

* Enables separate compilation, libraries that
need not be compiled, and resolves remaining
addresses

°Loader loads executable into memory and
begins execution.

CS 61C L19 Running a Program Il (32) Wawrzynek Spring 2006 © UCB

Things to Remember 3/3

°Stored Program concept is very powerful.
It means that instructions sometimes act
just like data. Therefore we can use
programs to manipulate other programs!

Compiler = Assembler = Linker (= Loader)

CS 61C L19 Running a Program Il (33) Wawrzynek Spring 2006 © UCB

