
CS 61C L17 Instruction Representation III (1) Wawrzynek Spring 2006 © UCB

2/27/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 17 - MIPS Instruction
Representation III

CS 61C L17 Instruction Representation III (2) Wawrzynek Spring 2006 © UCB

IEEE 754 Floating Point Standard (review)
°Biased Notation, where bias is number

subtracted to get real number
• IEEE 754 uses bias of 127 for single precision
• Subtract 127 from Exponent field to get actual value

for exponent
• 1023 is bias for double precision

°Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
(-1)S x (1 + Significand) x 2(Exponent-127)

Double precision exp:11, significand:52
and exponent bias of 1023

CS 61C L17 Instruction Representation III (3) Wawrzynek Spring 2006 © UCB

IEEE 754 Floating Point Review (2)
°Encodings (Single Precision):

Exponent Significand Object
0 0 0
0 nonzero denormal.
1-254 anything +/- fl. pt. #
255 0 +/- infinity
255 nonzero NaN

Denormalized number: no (implied)
leading 1, exponent = -126.

CS 61C L17 Instruction Representation III (4) Wawrzynek Spring 2006 © UCB

Outline

°Disassembly
°Pseudoinstructions and
“True” Assembly Language (TAL) v.
“MIPS” Assembly Language (MAL)

CS 61C L17 Instruction Representation III (5) Wawrzynek Spring 2006 © UCB

Decoding Machine Language
° How do we convert 1s and 0s to

assembly language and to C code?
Machine language ⇒ assembly ⇒ C?

° For each 32 bits:
1. Look at opcode to distinquish between R-

Format, J-Format, and I-Format.
2. Use instruction format to determine which

fields exist.
3. Write out MIPS assembly code,

converting each field to name, register
number/name, or decimal/hex number.

4. Logically convert this MIPS code into
valid C code. Always possible? Unique?

CS 61C L17 Instruction Representation III (6) Wawrzynek Spring 2006 © UCB

Decoding Example (1/7)

°Here are six machine language
instructions in hexadecimal:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

°Let the first instruction be at address
4,194,304ten (0x00400000hex).
°Next step: convert hex to binary

CS 61C L17 Instruction Representation III (7) Wawrzynek Spring 2006 © UCB

Decoding Example (2/7)

°The six machine language instructions in
binary:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

°Next step: identify opcode and format

1, 4-31 rs rt immediate
0 rs rt rd functshamtR

I
J target address2 or 3

CS 61C L17 Instruction Representation III (8) Wawrzynek Spring 2006 © UCB

Decoding Example (3/7)
°Select the opcode (first 6 bits)

to determine the format:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

°Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.
° Next step: separation of fields

R
R
I
R
I
J

Format:

CS 61C L17 Instruction Representation III (9) Wawrzynek Spring 2006 © UCB

Decoding Example (4/7)

°Fields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

°Next step: translate (“disassemble”) to
MIPS assembly instructions

R
R
I
R
I
J

Format:

CS 61C L17 Instruction Representation III (10) Wawrzynek Spring 2006 © UCB

Decoding Example (5/7)

°MIPS Assembly (Part 1):
Address: Assembly instructions:
0x00400000 or $2,$0,$0
0x00400004 slt $8,$0,$5
0x00400008 beq $8,$0,3
0x0040000c add $2,$2,$4
0x00400010 addi $5,$5,-1
0x00400014 j 0x100001

°Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)

CS 61C L17 Instruction Representation III (11) Wawrzynek Spring 2006 © UCB

Decoding Example (6/7)

°MIPS Assembly (Part 2):

or $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

°Next step: translate to C code
(must be creative!)

CS 61C L17 Instruction Representation III (12) Wawrzynek Spring 2006 © UCB

Decoding Example (7/7)
°After C code (Mapping below)

$v0: product
$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand;
multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

Demonstrated Big 61C
Idea: Instructions are
just numbers, code is
treated like data

 or $v0,$0,$0
Loop: slt $t0,$0,$a1
 beq $t0,$0,Exit
 add $v0,$v0,$a0
 addi $a1,$a1,-1
 j Loop
Exit:

CS 61C L17 Instruction Representation III (13) Wawrzynek Spring 2006 © UCB

Administrivia

°Exam ready to return
°Stats posted on website
°Regrade policy on website:
•Put it in writing
•Before one week from today

CS 61C L17 Instruction Representation III (14) Wawrzynek Spring 2006 © UCB

Review from before: lui
°So how does lui help us?
•Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

•Now each I-format instruction has only a 16-
bit immediate.

°Wouldn’t it be nice if the assembler
would this for us automatically?

- If number too big, then just automatically
replace addi with lui, ori, add

CS 61C L17 Instruction Representation III (15) Wawrzynek Spring 2006 © UCB

True Assembly Language (1/3)
°Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
language instruction, but into other MIPS
instructions
°What happens with pseudo-instructions?
• They’re broken up by the assembler into
several “real” MIPS instructions.

° Some examples follow

CS 61C L17 Instruction Representation III (16) Wawrzynek Spring 2006 © UCB

Example Pseudoinstructions

°Register Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

°Load Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS 61C L17 Instruction Representation III (17) Wawrzynek Spring 2006 © UCB

Example Pseudoinstructions

°Load Address: How do we get the
address of an instruction or global
variable into a register?
la reg,label
Again if value fits in 16 bits:
addi reg,$zero,label_value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS 61C L17 Instruction Representation III (18) Wawrzynek Spring 2006 © UCB

True Assembly Language (2/3)
°Problem:
•When breaking up a pseudo-instruction,
the assembler may need to use an extra
reg.
• If it uses any regular register, it’ll overwrite
whatever the program has put into it.

°Solution:
•Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.
•Since the assembler may use this at any
time, it’s not safe to code with it.

CS 61C L17 Instruction Representation III (19) Wawrzynek Spring 2006 © UCB

Example Pseudoinstructions

°Rotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

°“No OPeration” instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0

CS 61C L17 Instruction Representation III (20) Wawrzynek Spring 2006 © UCB

Example Pseudoinstructions
°Wrong operation for operand

addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu reg,reg,$at

°How do we avoid confusion about whether
we are talking about MIPS assembler with
or without pseudoinstructions?

CS 61C L17 Instruction Representation III (21) Wawrzynek Spring 2006 © UCB

True Assembly Language (3/3)
°MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions
°TAL (True Assembly Language): set of
instructions that can actually get
translated into a single machine
language instruction (32-bit binary string)
°A program must be converted from MAL
into TAL before translation into 1s & 0s.

CS 61C L17 Instruction Representation III (22) Wawrzynek Spring 2006 © UCB

Questions on Pseudoinstructions

°Question:
•How does MIPS assembler / SPIM
recognize pseudo-instructions?

°Answer:
• It looks for officially defined pseudo-
instructions, such as ror and move
• It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully

CS 61C L17 Instruction Representation III (23) Wawrzynek Spring 2006 © UCB

Rewrite TAL as MAL

°TAL:
or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

°This time convert to MAL
° It’s OK for this exercise to
make up MAL instructions

CS 61C L17 Instruction Representation III (24) Wawrzynek Spring 2006 © UCB

Rewrite TAL as MAL (Answer)
°TAL: or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

°MAL:
li $v0,0

Loop: bge $zero,$a1,Exit
add $v0,$v0,$a0
sub $a1,$a1,1
j Loop

Exit:

CS 61C L17 Instruction Representation III (25) Wawrzynek Spring 2006 © UCB

Quiz

Which of the instructions below are MAL
and which are TAL?
A. addi $t0, $t1, 40000

B. beq $s0, 10, Exit

C. sub $t0, $t1, 1

 ABC
1: MMM
2: MMT
3: MTM
4: MTT
5: TMM
6: TMT
7: TTM
8: TTT

CS 61C L17 Instruction Representation III (26) Wawrzynek Spring 2006 © UCB

Quiz Answer
°Which of the instructions below are
MAL and which are TAL?

i. addi $t0, $t1, 40000
ii. beq $s0, 10, Exit
iii. sub $t0, $t1, 1

40,000 > +32,767 =>lui,ori

sub: both must be registers;
even if it was subi,
there is no subi in TAL;
generates addi $t0,$t1, -1

Beq: both must be registers
Exit: if > 215, then MAL

 ABC
1: MMM
2: MMT
3: MTM
4: MTT
5: TMM
6: TMT
7: TTM
8: TTT

CS 61C L17 Instruction Representation III (27) Wawrzynek Spring 2006 © UCB

In Conclusion

°Disassembly is simple and starts by
decoding opcode field.
•Be creative, efficient when authoring C

°Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)
•Only TAL can be converted to raw binary
•Assembler’s job to do conversion
•Assembler uses reserved register $at
•MAL makes it much easier to write MIPS

