CS61C - Machine Structures
 Lecture 16 - Floating Point Numbers II

2/24/2006 John Wawrzynek
(www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/

IEEE 754 Floating Point Standard (review)

${ }^{\circ}$ Biased Notation, where bias is number subtracted to get real number

- IEEE 754 uses bias of 127 for single precision
- Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision
${ }^{\circ}$ Summary (single precision):
$3130 \quad 2322$

S	Exponent	Significand

1 bit 8 bits 23 bits
$(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{(\text {Exponent-127) }}$
Double precision identical, except with exponent bias of 1023

Example: Converting Binary FP to Decimal

| 0 | 01101000 | 10101010100001101000010 |
| :--- | :--- | :--- | :--- |

Sign: 0 => positive
${ }^{\circ}$ Exponent:

- $01101000_{\text {two }}=104_{\text {ten }}$
- Bias adjustment: 104-127=-23
${ }^{\circ}$ Significand:
$1+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4}+1 \times 2^{-5}+\ldots$ $=1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22}$ $=1.0+0.666115$
${ }^{\circ}$ Represents: $1.666115_{\text {ten }}{ }^{*} 2^{-23} \sim 1.986 * 10^{-7}$
(about 2/10,000,000)

Example: Converting Decimal to FP

-2.340625×10^{1}

1. Denormalize: - 23.40625
2. Convert integer part:

$$
23=16+(7=4+(3=2+(1)))=10111_{2}
$$

3. Convert fractional part:
$.40625=.25+(.15625=.125+(.03125))=.01101_{2}$
4. Put parts together and normalize:
$10111.01101=1.011101101 \times 2^{4}$
5. Convert exponent: $127+4=10000011_{2}$

\section*{| 1 | 10000011 | 01110110100000000000000 |
| :--- | :--- | :--- |}

Representation for +/- Infinity

${ }^{\circ}$ In FP, divide by zero should produce +/- infinity, not overflow.
${ }^{\circ}$ Why?

- OK to do further computations with infinity e.g., $\mathrm{X} / 0$ > Y may be a valid comparison
${ }^{\circ}$ IEEE 754 represents +/- infinity
- Largest positive exponent reserved for infinity
- Significands all zeroes

Representation for 0

${ }^{\circ}$ Represent 0 ?

- exponent all zeroes
- significand all zeroes
- What about sign? Both cases valid.
+0: 00000000000000000000000000000000
-0: 10000000000000000000000000000000

Special Numbers

${ }^{\circ}$ What have we defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	nonzero	???
$1-254$	anything	+/- fl. pt. \#
255	0	+/- infinity
255	nonzero	???

" ${ }^{\text {"Wrofessor Kahan had clever ideas; }}$ "Waste not, want not"

- We'll talk about Exp=0,255 \& Sig!=0 later

Precision and Accuracy

Don't confuse these two terms!
Precision is a count of the number bits in a computer word used to represent a value.

Accuracy is a measure of the difference between the actual value of a number and its computer representation.
High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
Example: float pi = 3.14;
pi will be represented using all 24 bits of the significant (highly precise), but is only an approximation (not accurate).

Administrivia

${ }^{\circ}$ Midterm 1, 1 Pimentel, Tonight 6-8pm sharp

- Open Book/Notes, but no electronic devices of any kind!
© Don't forget to work on homework and start project 3 over the weekend.

Representation for Not a Number
${ }^{\circ}$ What do I get if I calculate sqrt(-4.0) or 0/0?

- If infinity is not an error, these shouldn't be either.
- Called Not a Number (NaN)
- Exponent = 255, Significand nonzero
${ }^{\circ}$ Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: $\mathrm{Op}(\mathrm{NaN}, \mathrm{X})=\mathrm{NaN}$

Special Numbers (cont'd)

${ }^{\circ}$ What have we defined so far? (Single Precision)?

Exponent	Significand	Object
0	0	0
0	nonzero	???
$1-254$	anything	+/- fl. pt. \#
255	0	$+/-$ infinity
255	nonzero	NaN

Representation for Denorms (1/2)
${ }^{\circ}$ Problem: There's a gap among representable FP numbers around 0

- Smallest representable pos num:

$$
a=1.0 \ldots 2^{*} 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:

$$
\begin{aligned}
& b=1.000 \ldots \ldots .1_{2} * 2^{-126}=2^{-126}+2^{-149} \\
& a-0=2^{-126} \\
& b-a=2^{-149}
\end{aligned}
$$

Representation for Denorms (2/2)

${ }^{\circ}$ Solution:

- We still haven't used Exponent = 0, Significand nonzero
- Denormalized number: no (implied) leading 1, exponent $=-126$.
- Smallest representable pos num:

$$
a=2^{-149}
$$

- Second smallest representable pos num:

$$
\begin{aligned}
& b=2^{-148} \\
& \quad-\infty \leftrightarrows+\infty
\end{aligned}
$$

Wawrzynek Spring 2006 © UCB

Rounding

${ }^{\circ}$ When we perform math on real numbers, we have to worry about rounding to fit the result in the significant field.
${ }^{\circ}$ The FP hardware carries two extra bits of precision, and then round to get the proper value
${ }^{\circ}$ Rounding also occurs when converting: double to a single precision value, or floating point number to an integer

IEEE FP Rounding Modes

${ }^{\circ}$ Round towards +infinity
-ALWAYS round "up": $2.001 \rightarrow 3$
-2.001 \rightarrow-2
${ }^{\circ}$ Round towards -infinity

- ALWAYS round "down": $1.999 \rightarrow$ 1,
$-1.999 \rightarrow-2$
${ }^{\circ}$ Truncate
- Just drop the last bits (round towards 0)
${ }^{\circ}$ Round to (nearest) even
- Normal rounding, almost

Round to Even

${ }^{\circ}$ Round like you learned in grade school
${ }^{\circ}$ Except if the value is right on the borderline, in which case we round to the nearest EVEN number
$2.5 \rightarrow 2$
$3.5 \rightarrow 4$
${ }^{\circ}$ Insures fairness on calculation

- This way, half the time we round up on tie, the other half time we round down
- Tends to balance out inaccuracies

This is the default rounding mode

Casting floats to ints and vice versa

(int) floating point expression
Coerces and converts it to the nearest integer (C uses truncation)

$$
i=(\text { int })(3.14159 * f) ;
$$

(float) expression converts integer to nearest floating point $\mathrm{f}=\mathrm{f}+$ (float) i ;

```
int }->\mathrm{ float }->\mathrm{ int
if (i == (int)((float) i)) {
    printf("true");
    }
    * Will not always print "true"
    `}\mathrm{ Most large values of integers don't
        have exact floating point
        representations
    * What about double?
```

float \rightarrow int \rightarrow float

$$
\begin{aligned}
& \text { if (f == (float) ((int) f)) \{ } \\
& \text { printf("true"); } \\
& \} \\
& { }^{\circ} \text { Will not always print "true" } \\
& \text { Small floating point numbers (<1) } \\
& \text { don't have integer representations } \\
& { }^{\circ} \text { For other numbers, rounding errors }
\end{aligned}
$$

Floating Point Fallacy

${ }^{\circ} \mathrm{FP}$ add associative: FALSE!
$\cdot x=-1.5 \times 10^{38}, y=1.5 \times 10^{38}$, and $z=1.0$
$\cdot x+(y+z)=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}+1.0\right)$
$=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}\right)=\underline{0.0}$
$\cdot(x+y)+z=\left(-1.5 \times 10^{38}+1.5 \times 10^{38}\right)+1.0$
$=(0.0)+1.0=1.0$

${ }^{\circ}$ Therefore, Floating Point add is not associative!

- Why? FP result approximates real result!
- This example: 1.5×10^{38} is so much larger than 1.0 that $1.5 \times 10^{38}+1.0$ in floating point representation is still 1.5×10^{38}

FP Addition

${ }^{\circ}$ More difficult than with integers
${ }^{\circ}$ Can't just add significands
${ }^{\circ}$ How do we do it?

- De-normalize to match exponents
- Add significands to get resulting one
- Keep the same exponent
- Normalize (possibly changing exponent)
${ }^{\circ}$ Note: If signs differ, just perform a subtract instead.

MIPS Floating Point Architecture (1/4)

${ }^{\circ}$ MIPS has special instructions for floating point operations:

- Single Precision:
add.s, sub.s, mul.s, div.s
- Double Precision:
add.d, sub.d, mul.d, div.d
${ }^{\circ}$ These instructions are far more complicated than their integer counterparts. They require special hardware and usually so they can take much longer to compute.

MIPS Floating Point Architecture (2/4)

${ }^{\circ}$ Problems:

- It's inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change from FP to int, or vice versa, within a program. So only one type of instruction will be used on it.
- Some programs do no floating point calculations
- It takes lots of hardware relative to integers to do Floating Point fast

MIPS Floating Point Architecture (3/4)

${ }^{\circ} 1990$ Solution: Make a completely separate chip that handles only FP.
${ }^{\circ}$ Coprocessor 1: FP chip

- contains 32 32-bit registers: $\$ \mathrm{f} 0, \$ \mathrm{f} 1, \ldots$
- most registers specified in . s and .d instruction refer to this set
- separate load and store: lwc1 and swc1 ("load word coprocessor 1", "store ...")
- Double Precision: by convention, even/odd pair contain one DP FP number: \$f0/\$f1, \$f2/\$f3, .., \$f30/\$f31

MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips:

- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
-Today, cheap chips may leave out FP HW
${ }^{\circ}$ Instructions to move data between main processor and coprocessors:
$\cdot \mathrm{mfc} 0, \mathrm{mtc} 0, \mathrm{mfc} 1, \mathrm{mtc} 1$, etc.
${ }^{\circ}$ Appendix pages A-70 to A-74 contain many, many more FP operations.

Things to Remember

${ }^{\circ}$ Floating Point lets us:

- Represent numbers containing both integer and fractional parts; makes efficient use of available bits.
- Store approximate values for very large and very small numbers.
${ }^{\circ}$ IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
${ }^{\circ}$ New MIPS registers(\$ $\mathbf{f 0} \mathbf{- \$ £ 3 1)}$, instruct.:
- Single Precision (32 bits, $2 \times 10^{-38} \ldots 2 \times 10^{38}$):
add.s, sub.s, mul.s, div.s
- Double Precision (64 bits , $2 \times 10^{-308} \ldots 2 \times 10^{308}$):
$\underset{\text { Point II (26) }}{\text { add }}$ d sub. d, mu1. d, div.d

