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IEEE 754 Floating Point Standard (review)
° Biased Notation, where bias is number

subtracted to get real number
• IEEE 754 uses bias of 127 for single precision
• Subtract 127 from Exponent field to get actual value

for exponent
• 1023 is bias for double precision

°Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
(-1)S x (1 + Significand) x 2(Exponent-127)

Double precision identical, except with
exponent bias of 1023
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Example: Converting Binary FP to Decimal

°Sign: 0 => positive
°Exponent:

• 0110 1000two = 104ten
• Bias adjustment: 104 - 127 = -23

°Significand:
1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22
= 1.0 + 0.666115

0 0110 1000 101 0101 0100 0011 0100 0010

°Represents: 1.666115ten*2-23 ~ 1.986*10-7

(about 2/10,000,000)
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Example: Converting Decimal to FP

1. Denormalize: -23.40625
2. Convert integer part:

23 = 16 + ( 7 = 4 + ( 3 = 2 + ( 1 ) ) )  =  101112

3. Convert fractional part:
.40625 = .25 + ( .15625 = .125 + ( .03125 ) ) = .011012

4. Put parts together and normalize:
10111.01101 = 1.011101101 x 24

5. Convert exponent:  127 + 4 = 100000112

1 1000 0011 011 1011 0100 0000 0000 0000

-2.340625 x 101
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Representation for +/- Infinity

° In FP, divide by zero should produce
+/- infinity, not overflow.

°Why?
• OK to do further computations with
infinity e.g.,  X/0  >  Y may be a valid
comparison

° IEEE 754 represents +/- infinity
• Largest positive exponent reserved for
infinity

• Significands all zeroes
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Representation for 0
°Represent 0?

• exponent all zeroes
• significand all zeroes
• What about sign?  Both cases valid.
+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000
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Special Numbers
°What have we defined so far? 
(Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- infinity
255 nonzero ???

°Professor Kahan had clever ideas;
“Waste not, want not”

• We’ll talk about Exp=0,255 & Sig!=0  later
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Precision and Accuracy

Precision is a count of the number bits in a
computer word used to represent a value.

Accuracy is a measure of the difference
between the actual value of a number and
its computer representation.

Don’t confuse these two terms!

High precision permits high accuracy but doesn’t 
guarantee it.  It is possible to have high precision
but low accuracy. 
Example: float pi = 3.14;

pi will be represented using all 24 bits of the
significant (highly precise), but is only an
approximation (not accurate).



CS 61C L16 Floating Point II  (9) Wawrzynek Spring 2006 © UCB

Administrivia

°Midterm 1, 1 Pimentel, Tonight  6-8pm
sharp

• Open Book/Notes, but no electronic devices
of any kind!

°Don’t forget to work on homework and
start project 3 over the weekend.
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Representation for Not a Number

°What do I get if I calculate  
sqrt(-4.0)or 0/0?

• If infinity is not an error, these shouldn’t
be either.

• Called Not a Number (NaN)
• Exponent = 255, Significand nonzero

° Why is this useful?
• Hope NaNs help with debugging?
• They contaminate: op(NaN,X) = NaN
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Special Numbers (cont’d)
°What have we defined so far?
(Single Precision)?

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- infinity
255 nonzero NaN
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Representation for Denorms (1/2)
°Problem: There’s a gap among
representable FP numbers around 0

• Smallest representable pos num:
a = 1.0… 2 * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0 +-

Gaps!
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Representation for Denorms (2/2)

°Solution:
• We still haven’t used Exponent = 0,
Significand nonzero

• Denormalized number: no (implied)
leading 1, exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0 +-
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Rounding

°When we perform math on real
numbers, we have to worry about
rounding to fit the result in the
significant field.

°The FP hardware carries two extra bits
of precision, and then round to get the
proper value

°Rounding also occurs when converting:
 double to a single precision value, or
 floating point number to an integer
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IEEE FP Rounding Modes
°Round towards +infinity

• ALWAYS round “up”: 2.001 → 3
-2.001 → -2

°Round towards -infinity
• ALWAYS round “down”: 1.999 →  1,
-1.999 →  -2

°Truncate
• Just drop the last bits (round towards 0)

°Round to (nearest) even
• Normal rounding, almost
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Round to Even
°Round like you learned in grade school
°Except if the value is right on the
borderline, in which case we round to
the nearest EVEN number

2.5 →  2
3.5 →  4

° Insures fairness on calculation
• This way, half the time we round up on tie,
the other half time we round down

• Tends to balance out inaccuracies

This is the default rounding mode
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Casting floats to ints and vice versa

(int) floating point expression
Coerces and converts it to the nearest
integer (C uses truncation)
i = (int) (3.14159 * f);

(float) expression

converts integer to nearest floating point
f = f + (float) i;
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int →  float →  int

°Will not always print “true”
°Most large values of integers don’t
have exact floating point
representations

°What about double?

if (i == (int)((float) i)) {

 printf(“true”);

}
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float →  int →  float

°Will not always print “true”
°Small floating point numbers (<1)
don’t have integer representations

°For other numbers, rounding errors

if (f == (float)((int) f)) {

 printf(“true”);

}
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Floating Point Fallacy
°FP add associative: FALSE!

• x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0
• x + (y + z) = –1.5x1038 + (1.5x1038 + 1.0)

= –1.5x1038 + (1.5x1038) = 0.0
• (x + y) + z = (–1.5x1038 + 1.5x1038) + 1.0

= (0.0) + 1.0 = 1.0

°Therefore, Floating Point add is not
associative!

• Why? FP result approximates real result!
• This example: 1.5 x 1038 is so much larger
than 1.0 that 1.5 x 1038 + 1.0 in floating point
representation is still 1.5 x 1038
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FP Addition

°More difficult than with integers
°Can’t just add significands
°How do we do it?

• De-normalize to match exponents
• Add significands to get resulting one
• Keep the same exponent
• Normalize (possibly changing exponent)

°Note: If signs differ, just perform a
subtract instead.
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MIPS Floating Point Architecture (1/4)
°MIPS has special instructions for
floating point operations:

• Single Precision:
add.s, sub.s, mul.s, div.s

• Double Precision:
add.d, sub.d, mul.d, div.d

°These instructions are far more
complicated than their integer
counterparts.  They require special
hardware and usually so they can take
much longer to compute.
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MIPS Floating Point Architecture (2/4)

°Problems:
• It’s inefficient to have different
instructions take vastly differing
amounts of time.

• Generally, a particular piece of data will
not change from FP to int, or vice versa,
within a program.  So only one type of
instruction will be used on it.

• Some programs do no floating point
calculations

• It takes lots of hardware relative to
integers to do Floating Point fast
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MIPS Floating Point Architecture (3/4)

°1990 Solution: Make a completely
separate chip that handles only FP.

°Coprocessor 1: FP chip
• contains 32 32-bit registers: $f0, $f1, …
• most registers specified in .s and .d
instruction refer to this set

• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31
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MIPS Floating Point Architecture (4/4)
°1990 Computer actually contains
multiple separate chips:

• Processor: handles all the normal stuff
• Coprocessor 1: handles FP and only FP;
• more coprocessors?… Yes, later
• Today, cheap chips may leave out FP HW

° Instructions to move data between
main processor and coprocessors:
•mfc0, mtc0, mfc1, mtc1, etc.

°Appendix pages A-70 to A-74 contain
many, many more FP operations.
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Things to Remember
°Floating Point lets us:

• Represent numbers containing both integer
and fractional parts; makes efficient use of
available bits.

• Store approximate values for very large and
very small numbers.

° IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers

°New MIPS registers($f0-$f31), instruct.:
• Single Precision (32 bits, 2x10-38… 2x1038):

add.s, sub.s, mul.s, div.s
• Double Precision (64 bits , 2x10-308…2x10308):

add.d, sub.d, mul.d, div.d


