
CS 61C L16 Floating Point II (1) Wawrzynek Spring 2006 © UCB

2/24/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 16 - Floating Point Numbers II

CS 61C L16 Floating Point II (2) Wawrzynek Spring 2006 © UCB

IEEE 754 Floating Point Standard (review)
° Biased Notation, where bias is number

subtracted to get real number
• IEEE 754 uses bias of 127 for single precision
• Subtract 127 from Exponent field to get actual value

for exponent
• 1023 is bias for double precision

°Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
(-1)S x (1 + Significand) x 2(Exponent-127)

Double precision identical, except with
exponent bias of 1023

CS 61C L16 Floating Point II (3) Wawrzynek Spring 2006 © UCB

Example: Converting Binary FP to Decimal

°Sign: 0 => positive
°Exponent:

• 0110 1000two = 104ten
• Bias adjustment: 104 - 127 = -23

°Significand:
1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22
= 1.0 + 0.666115

0 0110 1000 101 0101 0100 0011 0100 0010

°Represents: 1.666115ten*2-23 ~ 1.986*10-7

(about 2/10,000,000)

CS 61C L16 Floating Point II (4) Wawrzynek Spring 2006 © UCB

Example: Converting Decimal to FP

1. Denormalize: -23.40625
2. Convert integer part:

23 = 16 + (7 = 4 + (3 = 2 + (1))) = 101112

3. Convert fractional part:
.40625 = .25 + (.15625 = .125 + (.03125)) = .011012

4. Put parts together and normalize:
10111.01101 = 1.011101101 x 24

5. Convert exponent: 127 + 4 = 100000112

1 1000 0011 011 1011 0100 0000 0000 0000

-2.340625 x 101

CS 61C L16 Floating Point II (5) Wawrzynek Spring 2006 © UCB

Representation for +/- Infinity

° In FP, divide by zero should produce
+/- infinity, not overflow.

°Why?
• OK to do further computations with
infinity e.g., X/0 > Y may be a valid
comparison

° IEEE 754 represents +/- infinity
• Largest positive exponent reserved for
infinity

• Significands all zeroes

CS 61C L16 Floating Point II (6) Wawrzynek Spring 2006 © UCB

Representation for 0
°Represent 0?

• exponent all zeroes
• significand all zeroes
• What about sign? Both cases valid.
+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000

CS 61C L16 Floating Point II (7) Wawrzynek Spring 2006 © UCB

Special Numbers
°What have we defined so far?
(Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- infinity
255 nonzero ???

°Professor Kahan had clever ideas;
“Waste not, want not”

• We’ll talk about Exp=0,255 & Sig!=0 later

CS 61C L16 Floating Point II (8) Wawrzynek Spring 2006 © UCB

Precision and Accuracy

Precision is a count of the number bits in a
computer word used to represent a value.

Accuracy is a measure of the difference
between the actual value of a number and
its computer representation.

Don’t confuse these two terms!

High precision permits high accuracy but doesn’t
guarantee it. It is possible to have high precision
but low accuracy.
Example: float pi = 3.14;

pi will be represented using all 24 bits of the
significant (highly precise), but is only an
approximation (not accurate).

CS 61C L16 Floating Point II (9) Wawrzynek Spring 2006 © UCB

Administrivia

°Midterm 1, 1 Pimentel, Tonight 6-8pm
sharp

• Open Book/Notes, but no electronic devices
of any kind!

°Don’t forget to work on homework and
start project 3 over the weekend.

CS 61C L16 Floating Point II (10) Wawrzynek Spring 2006 © UCB

Representation for Not a Number

°What do I get if I calculate
sqrt(-4.0)or 0/0?

• If infinity is not an error, these shouldn’t
be either.

• Called Not a Number (NaN)
• Exponent = 255, Significand nonzero

° Why is this useful?
• Hope NaNs help with debugging?
• They contaminate: op(NaN,X) = NaN

CS 61C L16 Floating Point II (11) Wawrzynek Spring 2006 © UCB

Special Numbers (cont’d)
°What have we defined so far?
(Single Precision)?

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- infinity
255 nonzero NaN

CS 61C L16 Floating Point II (12) Wawrzynek Spring 2006 © UCB

Representation for Denorms (1/2)
°Problem: There’s a gap among
representable FP numbers around 0

• Smallest representable pos num:
a = 1.0… 2 * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0 +-

Gaps!

CS 61C L16 Floating Point II (13) Wawrzynek Spring 2006 © UCB

Representation for Denorms (2/2)

°Solution:
• We still haven’t used Exponent = 0,
Significand nonzero

• Denormalized number: no (implied)
leading 1, exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0 +-

CS 61C L16 Floating Point II (14) Wawrzynek Spring 2006 © UCB

Rounding

°When we perform math on real
numbers, we have to worry about
rounding to fit the result in the
significant field.

°The FP hardware carries two extra bits
of precision, and then round to get the
proper value

°Rounding also occurs when converting:
 double to a single precision value, or
 floating point number to an integer

CS 61C L16 Floating Point II (15) Wawrzynek Spring 2006 © UCB

IEEE FP Rounding Modes
°Round towards +infinity

• ALWAYS round “up”: 2.001 → 3
-2.001 → -2

°Round towards -infinity
• ALWAYS round “down”: 1.999 → 1,
-1.999 → -2

°Truncate
• Just drop the last bits (round towards 0)

°Round to (nearest) even
• Normal rounding, almost

CS 61C L16 Floating Point II (16) Wawrzynek Spring 2006 © UCB

Round to Even
°Round like you learned in grade school
°Except if the value is right on the
borderline, in which case we round to
the nearest EVEN number

2.5 → 2
3.5 → 4

° Insures fairness on calculation
• This way, half the time we round up on tie,
the other half time we round down

• Tends to balance out inaccuracies

This is the default rounding mode

CS 61C L16 Floating Point II (17) Wawrzynek Spring 2006 © UCB

Casting floats to ints and vice versa

(int) floating point expression
Coerces and converts it to the nearest
integer (C uses truncation)
i = (int) (3.14159 * f);

(float) expression

converts integer to nearest floating point
f = f + (float) i;

CS 61C L16 Floating Point II (18) Wawrzynek Spring 2006 © UCB

int → float → int

°Will not always print “true”
°Most large values of integers don’t
have exact floating point
representations

°What about double?

if (i == (int)((float) i)) {

 printf(“true”);

}

CS 61C L16 Floating Point II (19) Wawrzynek Spring 2006 © UCB

float → int → float

°Will not always print “true”
°Small floating point numbers (<1)
don’t have integer representations

°For other numbers, rounding errors

if (f == (float)((int) f)) {

 printf(“true”);

}

CS 61C L16 Floating Point II (20) Wawrzynek Spring 2006 © UCB

Floating Point Fallacy
°FP add associative: FALSE!

• x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0
• x + (y + z) = –1.5x1038 + (1.5x1038 + 1.0)

= –1.5x1038 + (1.5x1038) = 0.0
• (x + y) + z = (–1.5x1038 + 1.5x1038) + 1.0

= (0.0) + 1.0 = 1.0

°Therefore, Floating Point add is not
associative!

• Why? FP result approximates real result!
• This example: 1.5 x 1038 is so much larger
than 1.0 that 1.5 x 1038 + 1.0 in floating point
representation is still 1.5 x 1038

CS 61C L16 Floating Point II (21) Wawrzynek Spring 2006 © UCB

FP Addition

°More difficult than with integers
°Can’t just add significands
°How do we do it?

• De-normalize to match exponents
• Add significands to get resulting one
• Keep the same exponent
• Normalize (possibly changing exponent)

°Note: If signs differ, just perform a
subtract instead.

CS 61C L16 Floating Point II (22) Wawrzynek Spring 2006 © UCB

MIPS Floating Point Architecture (1/4)
°MIPS has special instructions for
floating point operations:

• Single Precision:
add.s, sub.s, mul.s, div.s

• Double Precision:
add.d, sub.d, mul.d, div.d

°These instructions are far more
complicated than their integer
counterparts. They require special
hardware and usually so they can take
much longer to compute.

CS 61C L16 Floating Point II (23) Wawrzynek Spring 2006 © UCB

MIPS Floating Point Architecture (2/4)

°Problems:
• It’s inefficient to have different
instructions take vastly differing
amounts of time.

• Generally, a particular piece of data will
not change from FP to int, or vice versa,
within a program. So only one type of
instruction will be used on it.

• Some programs do no floating point
calculations

• It takes lots of hardware relative to
integers to do Floating Point fast

CS 61C L16 Floating Point II (24) Wawrzynek Spring 2006 © UCB

MIPS Floating Point Architecture (3/4)

°1990 Solution: Make a completely
separate chip that handles only FP.

°Coprocessor 1: FP chip
• contains 32 32-bit registers: $f0, $f1, …
• most registers specified in .s and .d
instruction refer to this set

• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31

CS 61C L16 Floating Point II (25) Wawrzynek Spring 2006 © UCB

MIPS Floating Point Architecture (4/4)
°1990 Computer actually contains
multiple separate chips:

• Processor: handles all the normal stuff
• Coprocessor 1: handles FP and only FP;
• more coprocessors?… Yes, later
• Today, cheap chips may leave out FP HW

° Instructions to move data between
main processor and coprocessors:
•mfc0, mtc0, mfc1, mtc1, etc.

°Appendix pages A-70 to A-74 contain
many, many more FP operations.

CS 61C L16 Floating Point II (26) Wawrzynek Spring 2006 © UCB

Things to Remember
°Floating Point lets us:

• Represent numbers containing both integer
and fractional parts; makes efficient use of
available bits.

• Store approximate values for very large and
very small numbers.

° IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers

°New MIPS registers($f0-$f31), instruct.:
• Single Precision (32 bits, 2x10-38… 2x1038):

add.s, sub.s, mul.s, div.s
• Double Precision (64 bits , 2x10-308…2x10308):

add.d, sub.d, mul.d, div.d

