CS61C — Machine Structures

Lecture 13 - MIPS Instruction
Representation |

2/15/2006
John Wawrzynek
(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS 61C L13 MIPS Instruction Representation | (1) Wawrzynek Spring 2006 © UCB

Overview - Instruction Representation

°Big idea: stored program
- consequences of stored program

°Instructions as numbers
°Instruction encoding

°MIPS instruction format for Add
instructions

°MIPS instruction format for Immediate,
Data transfer instructions

CS 61C L13 MIPS Instruction Representation | (2) Wawrzynek Spring 2006 © UCB

Big Idea: Stored-Program Concept

°Computers built on 2 key principles:

1) Instructions are represented as
bit patterns - can think of these as
numbers.

2) Therefore, entire programs can be
stored in memory to be read or
written just like data.

°Simplifies SW/HW of computer systems:

*Memory technology for data also used
for programs

CS 61C L13 MIPS Instruction Representation | (3) Wawrzynek Spring 2006 © UCB

Consequence #1: Everything Addressed

°Since all instructions and data are stored
in memory, everything has a memory
address: instructions, data words

- both branches and jumps use these
°C pointers are just memory addresses:
they can point to anything in memory
* Unconstrained use of addresses can lead to
nasty bugs; up to you in C; limits in Java
°One register keeps address of instruction
being executed: “Program Counter” (PC)

- Basically a pointer to memory: Intel calls it
Instruction Address Pointer, a better name

CS 61C L13 MIPS Instruction Representation | (4) Wawrzynek Spring 2006 © UCB

Consequence #2: Binary Compatibility

°Programs are distributed in binary form
* Programs bound to specific instruction set
- Different version for Macintoshes and PCs

°New machines want to run old programs

(“binaries”) as well as programs compiled
to new instructions

°Leads to “backward compatible”
instruction set evolving over time

°Selection of Intel 8086 in 1981 for 1st IBM
PC is major reason latest PCs still use
80x86 instruction set (Pentium 4); could
still run program from 1981 PC today

CS 61C L13 MIPS Instruction Representation | (5) Wawrzynek Spring 2006 © UCB

Instructions as Numbers (1/2)

°Currently all data we work with is in
words (32-bit blocks):

- Each register is a word.
1w and sw both access memory one word
at a time.
°So how do we represent instructions?

- Remember: Computer only understands
1s and 0s, so “add $t0,$0,$0” is
meaningless.

- MIPS wants simplicity: since data is in
words, make instructions be words too

CS 61C L13 MIPS Instruction Representation | (6) Wawrzynek Spring 2006 © UCB

Instructions as Numbers (2/2)

°One word is 32 bits, so divide
instruction word into “fields”.

°Each field tells processor something
about instruction.

°We could define different fields for
each instruction, but MIPS is based on
simplicity, so define 3 basic types of
instruction formats:

* R-format
* |-format
- J-format

CS 61C L13 MIPS Instruction Representation | (7) Wawrzynek Spring 2006 © UCB

Instruction Formats

°|-format: used for instructions with
immediates, 1w and sw (since the offset
counts as an immediate), and the
branches (beq and bne),

* (but not the shift instructions; later)
°J-format: used for j and jal
°R-format: used for all other instructions

°It will soon become clear why the
instructions have been partitioned in
this way.

CS 61C L13 MIPS Instruction Representation | (8) Wawrzynek Spring 2006 © UCB

R-Format Instructions (1/5)

°Define “fields” of the following number
of bitseach: 6 +5+5+5+5+6 =32

6 5 5 5 5 6

°For simplicity, each field has a name:

opcode| rs rt rd |shamt| funct

°Important: On these slides and in
book, each field is viewed as a 5- or 6-
bit unsigned integer, not as part of a
32-bit integer.

- Consequence: 5-bit fields can represent
any number 0-31, while 6-bit fields can
C861CL13MIPSInsEgiEresent(s)any number 0-63'

Representation | Wawrzynek Spring 2006 © UCB

R-Format Instructions (2/5)

°What do these field integer values tell us?

- opcode: partially specifies what instruction
itis
- Note: This number is equal to 0 for all R-Format
instructions.

- funct: combined with opcode, this number
exactly specifies the instruction

* Question: Why aren’t opcode and funct a
single 12-bit field?

- Answer: We’ll answer this later.

CS 61C L13 MIPS Instruction Representation | (10) Wawrzynek Spring 2006 © UCB

R-Format Instructions (3/5)

°More fields:

-rs (Source Register): generally used to
specify register containing first operand

- rt (Target Register): generally used to
specify register containing second
operand (note that name is misleading)

- rd (Destination Register): generally used
to specify register which will receive
result of computation

CS 61C L13 MIPS Instruction Representation | (11) Wawrzynek Spring 2006 © UCB

R-Format Instructions (4/5)

°Notes about register fields:

- Each register field is exactly 5 bits, which
means that it can specify any unsigned
integer in the range 0-31. Each of these
fields specifies one of the 32 registers by
number.

- The word “generally” was used because
there are exceptions that we’ll see later.
E.g.,

- mult and div have nothing important in the
rd field since the dest registers are hi and 1o

- mfhi and mflo have nothing important in the
rs and rt fields since the source is
determined by the instruction (p. 264 P&H)

CS 61C L13 MIPS Instruction Representation | (12) Wawrzynek Spring 2006 © UCB

R-Format Instructions (5/5)

°Final field:

-shamt: This field contains the amount a
shift instruction will shift by. Shifting a
32-bit word by more than 31 is useless,
so this field is only 5 bits (so it can
represent the numbers 0-31).

* This field is set to 0 in all but the shift
instructions.

°For a detailed description of field
usage for each instruction, see green
insert in COD 3/e

* (You can bring with you to all exams)

CS 61C L13 MIPS Instruction Representation | (13) Wawrzynek Spring 2006 © UCB

R-Format Example (1/2)

°MIPS Instruction:
add $8,%9,8$10

opcode = 0 (look up in table in book)
funct = 32 (look up in table in book)
rd = 8 (destination)

rs =9 (first operand)

rt =10 (second operand)

shamt = 0 (not a shift)

CS 61C L13 MIPS Instruction Representation | (14) Wawrzynek Spring 2006 © UCB

R-Format Example (2/2)

°MIPS Instruction:
add $8,$%9,$10
Decimal number per field representation:
0 9 10 8 0 32
Binary number per field representation:
{ 000000{01001/01010{01000|00000 (160000

hex representation: 012A 4020,,.,
decimal representation: 19,546,144,

- Called a Machine Language Instruction

CS 61C L13 MIPS Instruction Representation | (15) Wawrzynek Spring 2006 © UCB

Administrivia

CS 61C L13 MIPS Instruction Representation | (16) Wawrzynek Spring 2006 © UCB

I-Format Instructions (1/4)

°What about instructions with
immediates?

- 5-bit field only represents numbers up to
the value 31: immediates may be much
larger than this

- Ideally, MIPS would have only one
instruction format (for simplicity):
unfortunately, we need to compromise

°Define new instruction format that is
partially consistent with R-format:

* First notice that, if instruction has
immediate, then it uses at most 2 registers.

CS 61C L13 MIPS Instruction Representation | (17) Wawrzynek Spring 2006 © UCB

I-Format Instructions (2/4)

°Define “fields” of the following number
of bits each: 6 + 5 + 5 + 16 = 32 bits

6 5 5 16

°Again, each field has a name:

opcode| rs rt immediate

°Key Concept: Only one field is
inconsistent with R-format. Most
importantly, opcode is still in same
location.

CS 61C L13 MIPS Instruction Representation | (18) Wawrzynek Spring 2006 © UCB

I-Format Instructions (3/4)

°What do these fields mean?

- opcode: same as before except that, since there’s
no funct field, opcode uniquely specifies an
instruction in I-format

* This also answers question of why R-format has
two 6-bit fields to identify instruction instead of a
single 12-bit field: in order to be consistent as
possible with other formats while leaving as
much space as possible for immediate field.

- rs: specifies a register operand (if there is one)

- rt: specifies register which will receive result of
computation (this is why it’s called the target
register “rt”) or other operand for some
instructions.

CS 61C L13 MIPS Instruction Representation | (19) Wawrzynek Spring 2006 © UCB

I-Format Instructions (4/4)

°The Immediate Field:

*addi, slti, sltiu, the immediate is
sign-extended to 32 bits. Thus, it’s
treated as a signed integer.

16 bits =» can be used to represent
immediate up to 216 different values

* This is large enough to handle the offset
in a typical 1w or sw, plus a vast majority
of values that will be used in the s1ti
instruction.

- We’ll see what to do when the number is
too big in our next lecture...

CS 61C L13 MIPS Instruction Representation | (20) Wawrzynek Spring 2006 © UCB

I-Format Example (1/2)

°MIPS Instruction:
addi $21,$22,-50

opcode = 8 (look up in table in book)

rs = 22 (register containing operand)

rt = 21 (target register)

immediate = -50 (by default, this is decimal)

CS 61C L13 MIPS Instruction Representation | (21) Wawrzynek Spring 2006 © UCB

I-Format Example (2/2)

°MIPS Instruction:
addi $21,$22,-50

Decimal/field representation:

8 22 21 -50

Binary/field representation:
001000{10110y10101} 1111111111001110

hexadecimal representation: 22D5 FFCE, .,
decimal representation: 584,449,998,

CS 61C L13 MIPS Instruction Representation | (22) Wawrzynek Spring 2006 © UCB

Quiz
Which instruction has same representation as 35,,,?
1. add $0, $0, $0 fopcode| rs | rt | rd | shamt|funct |
2. subu $s0,$s0,$s0 [opcode| rs | rt | rd | shamt|funct |
3. lw $0, 0($0) lopcode| rs | rt | offset |
| |
| |

4. addi $0, $0, 35 lopcode| rs rt immediate |
5. subu $0, $0, $0 [opcode| rs rt rd | shamt [funct |

6. Trick question!
Instructions are not numbers

Registers numbers and names:
0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s57

Opcodes and function fields (if necessary)
add: opcode = 0, funct = 32
subu: opcode = 0, funct = 35
addi: opcode =8

code = 35

w: O
.
CS 61C L13 MIPS InstructiERepresentation 1(23) Wawrzynek Spring 2006 © UCB

In conclusion...

°Simplifying MIPS: Define instructions to
be same size as data word (one word)
so that they can use the same memory
(compiler can use 1w and sw).

°Computer actually stores programs as
a series of these 32-bit numbers.

°MIPS Machine Language Instruction:
32 bits representing a single instruction

R opcode| rs rt rd |shamt| funct
| | opcode| rs rt immediate

CS 61C L13 MIPS Instruction Representation | (25) Wawrzynek Spring 2006 © UCB

