# University of California at Berkeley <br> College of Engineering <br> Department of Electrical Engineering and Computer Science 

EECS61C, Fall 2003
HW 12

## Submitting Your Solution

Submit your solution as hardcopy to the 61 C homework turn-in boxes on the $2^{\text {nd }}$ floor of Soda Hall by 9 am on Friday November $21^{s t}$. Make sure to clearly mark your paper with your name, login, and section number.

1. Every 18 months to two years a new generation of integrated circuit technology comes out that permits more transistors on a single microprocessor chip. Briefly explain two uses for the extra transistors.
2. The clock signal is guaranteed to be the highest frequency signal in a digital system because it changes twice per clock period (once from low to high, and once from high to low). In a system made of the elements discussed in class (combinational logic blocks and positive edge-triggered flip-flops) what could be the frequency of the next highest frequency signal, in terms of the clock frequency $\mathrm{f}_{C L K}$.
3. Consider the circuit shown below. Assume inputs words, $\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots$, arrive one per clock period. Draw the detailed wave for the clock signal and the the signals at point $\mathrm{X}, \mathrm{A}, \mathrm{B}$, and C in the circuit for four clock cycles. Assume that the clock period is 5 ns and the clk-to-q delay is 1 ns .

4. Given the accumulator circuit discussed in class and presented in the notes, assume the following: The adder propagation delay is 4 ns , the register setup time is 1 ns , the register clk-to-q delay is 1 ns , and the clock frequency is 200 MHz . Will the accumulator function correctly? If not, make two suggestions on how to fix the problem.
5. Design a finite state machine (FSM) with the following behavior. Inputs arrive one bit at a time, one bit per clock cycle. The FSM outputs a 1 if the number of 1 's seen at the input thus far is odd and outputs a 0 if the number of 1 's seen at the input thus far is even. (You don't need to worry about initialization).
Do your design in three steps. First draw the state diagram, next specify the truth-table for next state and output based on present state and input, then devise the circuit level implementation.
6. Derive the truth-table for the CL circuit shown below. (Remember, you do this by applying all possible input combination, one at a time). What is the common name of this function?

7. Write the canonical sum-of-products form of a Boolean expression for a 3-input function whose output is a 1 iff the number of 1 's in its input is exactly two. (Note: this is not the majority function).
8. Write a simplified Boolean expression for the function represented in the truth-table. The solution is the OR of two AND terms, each with 2 variables.

| abcd | y |
| :--- | :--- |
| 0000 | 1 |
| 0001 | 1 |
| 0010 | 1 |
| 0011 | 1 |
| 0100 | 0 |
| 0101 | 0 |
| 0110 | 0 |
| 0111 | 0 |
| 1000 | 0 |
| 1001 | 1 |
| 1010 | 0 |
| 1011 | 1 |
| 1100 | 0 |
| 1101 | 1 |
| 1110 | 0 |
| 1111 | 1 |

9. Using AND gates, OR gates, and inverters, draw a circuit that represents the following Boolean equation:

$$
y=\bar{d}(a b+b c)
$$

Do no algebraic manipulation.
10. Draw the circuits for a single stage of an adder (one-bit wide adder) using only gates with 2 inputs.

