
! This class has been made inactive. No posts will be allowed until an instructor reactivates the class.

note @1481 278 views

[Extra content] Karnaugh maps
I got a question during lab today about how to simplify complex Boolean expressions (for example, when designing a
circuit implementation of an FSM). While you won't need this in the context of 61C, an interesting tool to simplify these
expressions is a Karnaugh map (or K-map). At a high level, a K-map is a different representation of a truth table that
makes it easier to group outputs visually and assign a common Boolean algebra expression to them. This page explains
it pretty well: https://www.eetimes.com/document.asp?doc_id=1278973#

If you're interested in learning more, feel free to swing by office hours 6-7 today and I'm happy to talk about this more!

Example: let's say we have the following truth table for a logic function with 4 inputs A-D and one output O.

The K-map for this will look like the following, putting AB on the vertical axis and CD on the horizontal:

Note that we have two clearly defined, convenient groups of 1s: the horizontal group corresponding to AB=10 and
the vertical group corresponding to CD=01. If a combination of inputs falls in either of these groups, we know that it
produces a true output. This gives us:

Similarly, you can make groups of 0s and apply DeMorgan's law, knowing that a true output cannot fall into any group
of 0s.

A

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

B

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

C

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

O

0

1

0

0

0

1

0

0

1

1

1

1

0

1

0

0

00

01

11

10

00

0

0

0

1

01

1

1

1

1

11

0

0

0

1

10

0

0

0

1

O = A + DB
¯ ¯¯̄

C
¯ ¯¯̄

https://www.eetimes.com/document.asp?doc_id=1278973#

Updated 1 year ago by

other

~ An instructor () thinks this is a good note ~Jerry Xu

Dinesh Parimi

followup discussions for lingering questions and comments

