! This class has been made inactive. No posts will be allowed until an instructor reactivates the class.

```
note @1481
```

278 views

## [Extra content] Karnaugh maps

I got a question during lab today about how to simplify complex Boolean expressions (for example, when designing a circuit implementation of an FSM). While you won't need this in the context of 61C, an interesting tool to simplify these expressions is a Karnaugh map (or K-map). At a high level, a K-map is a different representation of a truth table that makes it easier to group outputs visually and assign a common Boolean algebra expression to them. This page explains it pretty well: https://www.eetimes.com/document.asp?doc_id=1278973\#

If you're interested in learning more, feel free to swing by office hours 6-7 today and I'm happy to talk about this more!
Example: let's say we have the following truth table for a logic function with 4 inputs A-D and one output O.

| $A$ | $B$ | $C$ | $D$ | $O$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |

The K-map for this will look like the following, putting $A B$ on the vertical axis and CD on the horizontal:

|  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 0 | 1 | 0 | 0 |
| 01 | 0 | 1 | 0 | 0 |
| 11 | 0 | 1 | 0 | 0 |
| 10 | 1 | 1 | 1 | 1 |

Note that we have two clearly defined, convenient groups of 1 s : the horizontal group corresponding to $\mathrm{AB}=10$ and the vertical group corresponding to $C D=01$. If a combination of inputs falls in either of these groups, we know that it produces a true output. This gives us:
$O=A \bar{B}+\bar{C} D$

Similarly, you can make groups of 0 s and apply DeMorgan's law, knowing that a true output cannot fall into any group of 0 s .

## $\sim$ An instructor (Jerry Xu) thinks this is a good note $\sim$

Updated 1 year ago by Dinesh Parimi
followup discussions for lingering questions and comments

