Below the Program

- High-level language program (in C)
  ```c
  swap int v[], int k){
    temp;
    v[k] = v[k+1];
    v[k+1] = temp;
  }
  ```
- Assembly language program (for MIPS)
  ```mips
  swap: add $2, $5, 2
  lw $15, 0($2)
  lw $16, 4($2)
  sw $16, 0($2)
  sw $15, 4($2)
  je $31
  ```
- Machine (object) code (for MIPS)
  ```
  000000 0000 0101 0100000000000000
  000000 0100 0110 0100000000000000
  ```

Logic Design

- Next 2 weeks: we’ll study how a modern processor is built starting with basic logic elements as building blocks.
- Why study logic design?
 - Understand what processors can do fast and what they can’t do fast (avoid slow things if you want your code to run fast!)
 - Background for more detailed hardware courses (CS 150, CS 152)

Logic Gates

- Basic building blocks are logic gates.
 - In the beginning, did ad hoc designs, and then saw patterns repeated, gave names
 - Can build gates with transistors and resistors
- Then found theoretical basis for design
 - Can represent and reason about gates with truth tables and Boolean algebra
 - Assume know truth tables and Boolean algebra from a math or circuits course.
 - Section B.2 in the textbook has a review

Physical Hardware

Let’s look closer…
Combinational Logic

- Complex logic blocks are built from basic AND, OR, NOT building blocks we’ll see shortly.

- A **combinational** logic block is one in which the output is a function only of its current input.

- Combinational logic cannot have memory (e.g., a register is not a combinational unit).
Circuits with STATE (e.g., register)

Administrivia

• Midterm tonight @ 7pm in 1 Le Conte. Heard this enough yet?

Peer Instruction

A. SW can peek at HW (past ISA abstraction boundary) for optimizations
B. SW can depend on particular HW implementation of ISA
C. Timing diagrams serve as a critical debugging tool in the EE toolkit

And in conclusion...

• ISA is very important abstraction layer
 • Contract between HW and SW
• Basic building blocks are logic gates
• Clocks control pulse of our circuits
• Voltages are analog, quantized to 0/1
• Circuit delays are fact of life
• Two types
 • Stateless Combinational Logic (&,|,~)
 • State circuits (e.g., registers)