
Memory & C

CS61C Fall 2017

Contents

1 What is memory? 1

2 The Layout of Memory 2
2.1 The Code Segment . 2
2.2 The Data Segment . 2
2.3 The Stack . 2
2.4 The Heap . 3

3 Important Data Types and Concepts in C 3
3.1 Pointers . 3
3.2 Pointer Arithmetic . 3
3.3 Arrays . 5
3.4 Strings . 5
3.5 Structs . 5
3.6 malloc() . 5

1 What is memory?

In this class, when we say memory we are referring to dynamic random-access memory (DRAM), which are
large blocks of electronic cells, with each cell representing either a zero or one depending on the voltage
across the cell’s capacitor. Memory is where programs store data. When you create a list in Python or a
HashMap in Java, memory is where you store these variables!

More importantly for this class, memory is structured as bytes (units of 8 bits) of data. Each byte is
labeled or addressed with a number from 0 to N , where N is just the number of bytes of total memory your
machine has. In this class, we will generally assume our machines to have 232 bytes of memory, or N = 232

(for reasons explained in later units). This addressing is called byte-addressing, where each byte of data can
be found at a specific address. The data stored in memory can be of many different data types, such as a
char, an int, or a pointer:

• char represented by 1 byte of data, it has 28 = 256 different values. We convert the byte’s numerical
value (0 to 255) to a character literal (e.g. ’A’, ’B’, ’C’), using the ASCII table.

• int represented by 4 bytes of data, the value of the integer is the 32 bit number (in 2’s complement)
corresponding to the 4 bytes.

• pointer represented by 4 bytes of data, this data type specifically stores addresses. The 32 bit number
corresponding to the 4 bytes is interpreted as an unsigned number (from 0 to 232 − 1) that is the
address for (i.e. points to) a specific byte of data in memory.

For example, let’s say we had the following 4 bytes of data: 0x87617661. If we interpret these 4 bytes,
as 4 char’s then we would have ’ç’, ’a’, ’v’, ’a’. If we interpret them as an integer, then we would have the
signed 32 bit number: 0b 1000 0111 0110 0001 0111 0110 0110 0001 = -2,023,655,839. If we interpret
them as a pointer, then these 4 bytes are the address of byte number 2,271,311,457.

1

In the diagram below, the memory addresses of the bytes are on the left hand side, while the actual values
of those bytes are in the table. The offsets at the top simply indicate that the exact address of that byte is
the memory address on the left + the offset matching the byte’s column. For example, the byte in the 0th
row, 3rd column of the table is at address 0x7FFFFFFC + 3 = 0x7FFFFFFF (you’re going to get really good
at hex in this class), with value 0x04.

+
0

+
1

+
2

+
3

00 00 00 040x7FFFFFFC int x = 4;

FF FF FF FF0x7FFFFFF8 int y = -1;

7F FF FF FC0x7FFFFFF4 int* p = 0x7FFFFFFC;

00 AB CD EF0x7FFFFFF0 garbage

’6’ ’1’ ’C’ ’ !’0x7FFFFFEC (string literal) ”ILUV61C!”

’I’ ’L’ ’U’ ’V’0x7FFFFFE8 Note: in memory, each character is actually a numerical value

7F FF FF E80x7FFFFFE4 char* s = 0x7FFFFFE8;

...

Figure 1: An example memory contents.

2 The Layout of Memory

Now that we know what memory looks like, we can see how memory is actually laid out or organized for a
program. The 232 bytes of memory are divided into 4 main sections: the stack, the heap, the data segment,
and the code segment. An example memory layout is shown in Figure 4.

2.1 The Code Segment

This is where the actual code that comprises the program is stored. Your computer will actually know how
to execute your program by reading the data at this segment of memory. Like all data in memory, your
program is stored as just bytes of data. Later in this class, you’ll learn how your program is compiled into
assembly language, assembled into binary, and then loaded into this segment.

2.2 The Data Segment

This is where statically declared data is stored. By static, we mean variables/data that are declared outside
of your program’s main function and that are accessible to all methods/scopes of your program. The data
here are often constants that are shared by all parts of your program (although like in Java, static does not
mean constant).

2.3 The Stack

This is where local variables are stored. By local, we mean variables that are declared within the scope
of a function. Since these variables are only necessary for a function call, the data in this segment is not
preserved after the function call finishes. This means that after a function call ends, the memory allocated
for these local variables will be reclaimed and the corresponding data can (and likely will) be overwritten
in later function calls. For example, when you change the value of a local variable inside a function, that
change in value only persists within the scope of the function.

Additionally, unlike the other segments, the stack grows downwards, from higher addresses to lower
addresses, meaning that new data is stored at lesser addresses than previously stored data. For example, in
Program I and Figure 4, x was declared before s static, but x is stored at the higher address 0xFFFFFFFC

while y would be stored at the lower address 0xFFFFFFF8.

2

2.4 The Heap

This is where dynamically allocated data is stored. By dynamically allocated, we generally refer to vari-
ables/memory that is allocated using malloc(). Unlike data in the stack, data in the heap will persist after
a function call ends and is not automatically reclaimed. Therefore, programs must explicitly use free() to
free the memory in the heap when that data is no longer needed.

3 Important Data Types and Concepts in C

Unlike many languages, C allows programmers to interact directly with memory. This isn’t a C class, but
the language is very useful to know while learning memory (and many other concepts later in this class).
There are many data types in C, but some are particularly common.

3.1 Pointers

A pointer is just a memory address where data of a specific data type is stored. In C, a pointer is declared
by: {data type} *{pointer name}, where data type is the data type of the data at the pointer’s address,
and pointer name is just the name of the pointer variable. For example, int* x would declare a pointer to
an int, such that the value of x is the address of some integer. Additionally, int* x is the same as int *x,
but the latter is used more often for clarity 1. NULL is commonly used as the default value of a pointer when
the pointer’s actual values has not yet been set.

Pointers are useful for passing references to data in between functions. Since in C, arguments are passed
by value, if you were to pass an array of 1,000 elements to a function, then that entire array (of thousands
of bytes) would be copied into a parameter in the function call (in stack memory). Whereas, if you were to
pass a pointer to that array instead to the function, only the pointer (of just 4 bytes) would be copied into
a parameter. Passing a pointer into a function is similar to pass by reference in other languages, like Java
and Python.

There are also two operators regularly used with pointers, the & and * operators. The & operator takes
the address of a given variable. For example, following Program II in Figure 3, y would evaluate to 4 but
&y would evaluate to the memory address where y is stored.

The * or dereference operator can be thought of as the inverse of &. Given a pointer or memory address,
* will dereference that pointer by going to the corresponding address in memory and returning the actual
value stored at that address. For example, following Program II, y addr would contain some address, say
0xbfffffec, while *y addr would return 4 (since the value in memory stored at 0xbfffffec is 4). *y would
error out, as y is an int not a int*.

Also, when using the * operator, make sure that the pointer you are attempting to dereference is a valid
address (i.e. the address of an existing variable or allocated stack/heap/static memory). Dereferencing an
invalid pointer, either with value NULL or an address to unmapped/unallocated memory, will result in a
segmentation fault.

3.2 Pointer Arithmetic

In C, integers can be added and subtracted from pointers in order to move a number of bytes from a
given address. Specifically, {pointer of data type} + k, would return {the address stored in the

pointer} + {k * sizeof(data type) bytes}.
For example, following Program II, y addr + 2 would take the address stored in y addr, 0xbfffffec,

and then add 2 * sizeof(int) = 2 * 4 bytes = 8 bytes to that address, to ultimately return 0xbfffffec +

8 = 0xbffffff4.

1If you needed to declare two pointer variables, you may write int* p1, p2;. However, this will actually evaluate to int*

p1; int p2;. Instead, if you write int *p1, *p2 you will get the intended behavior int* p1; int* p2;

3

int z = -1;
int main(int argc, char* argv) {

int x = 3 * sizeof(int);
char* s_static = "61C";
char s_stack[4];
s_stack = "61B".

int *heap_arr = malloc(x);
heap_arr[0] = 1;
heap_arr[1] = 2;
heap_arr[2] = 4;

}

Figure 2: Program I

struct bear {
char* name;
struct bear* buddy;

};

int main(int argc, char* argv) {
int y = 4;
int *y_addr = &y;

int arr[4];
arr[0] = 1;
arr[1] = 2;
arr[2] = 3;
arr[3] = 4;
int* a = &(arr[0]);

int n = sizeof(struct bear);
struct bear stack_bear;
struct bear* heap_bear = malloc(n);

stack_bear.name = "Golden Bear";
stack_bear.buddy = heap_bear;
heap_bear->name = "Oski";
heap_bear->buddy = &stack_bear;

}

Figure 3: Program II

0xFFFFFFFF

00 00 00 0C int x

5F FF FF FC char* s static

FF FF FF F0 char s stack[]

’6’ ’1’ ’B’ 00 ”61B”

8F FF FF F4 int* heap arr

0xFFFFFFE8

...

Stack

...

0x90000000

00 00 00 04 heap arr[2]

00 00 00 02 heap arr[1]

00 00 00 01

Heap

 heap arr[0]

...

0x60000000

’6’ ’1’ ’C’ 00 ”61C”

FF FF FF FF

Data

int z

instructions ...

instructions ...

int z = - 1; ...

Code

 0x00000000

Figure 4: Memory after Program I

4

3.3 Arrays

An array is a list of elements similar to an array in Java, where all of the elements must be of the same data
type and the length of the array is fixed at declaration. They are declared as {data type} arr[length]

and their contents can be accessed with arr[index]. (see Program II)
Like many data types in C, arrays can be thought of as a special type of pointer, that points to the 0th

element of the array. For example, in Program II, arr == a.
When an array is declared, enough space in memory is allocated to store the contents of the array.

Specifically, declaring {data type} arr[length] would allocate length * sizeof(data type) bytes of
memory for the contents of arr. In Program I, declaring char s stack[4] allocated 4 bytes of stack
memory at 0xFFFFFFF0, that were then filled with ’6’, ’1’, ’B’, ’\0’. Indexing into an array is then just
pointer arithmetic, as arr[index] is equivalent to *(arr + index).

3.4 Strings

Unlike in most other languages, like Python and Java, strings are not their own data type in C. Instead,
strings are simply considered pointers to the 0th char of the string’s actual value, with the string’s literal
value being a contiguous sequence of char’s. The end of a string is then indicated by the null terminator,
’\0’, which is just a byte with value 0x00. For example, "61C" and "61B" are both null-terminated strings
in Figure 4.

Additionally, for strings, compilers generally store string literals in the static segment of memory even
if the literal is declared inside a function call (and would normally go into the stack). This optimization is
made because if a string literal is used, its value will likely not change during the program. However, one
exception to this optimization, is if a string literal is stored in a char[] instead of a char*. Since an array
allocates space for the array’s contents, the string literal will be stored in that allocated space in the stack
instead of in the static segment. Figure 4 shows the difference between the two with char* s static and
char s stack[].

3.5 Structs

Similar to objects in other languages, structs are used to associate many primitive data types (e.g. chars,
ints, pointers) into a new data type. For example, the struct bear in Program II, has a string variable for
a name, and a pointer to another instance of struct bear. In C, each of these ”instance variables” is called
a member of the struct (e.g. the buddy member).

After declaring a struct, you can then access its members using the . operator. It’s also very common
for programs to use pointers to structs. When accessing a member from a struct pointer, the -> operator
is used. For example, following Program II, heap bear->name; would return ”Oski” and is equivalent to
(*heap bear).name;.

Additionally, in memory, structs are stored as tightly packed, meaning that all the members of the struct
are stored together in a contiguous chunk of memory. Figure 5 shows an example of an instance of the bear
struct in memory.

...

’D’ ’o’ ’e’ ’\0’ char* name;

BF FF FF EC
struct bear

{
struct bear* buddy;

Figure 5: An example memory contents.

3.6 malloc()

malloc is a function in C that allows you to dynamically allocate memory (i.e. allocate memory from the
heap). It takes in one argument, the number of bytes of heap memory that you wish to allocate, and then
returns the address of where that allocated block starts. Although this class assumes data type sizes of a
32 bit machine, the number of bytes that represents a given data type can vary between machines, so when

5

specifying the number of bytes to allocate for malloc, the sizeof({data type}) function is used, which
returns the number of bytes that the given data type takes. For example, to allocate enough space for an
array of four integers: int* arr = malloc(4 * sizeof(int)). Figure 6 shows an example of a situation
that requires malloc: since stack variables do not persist after the end of the function call, a heap variable
must be used when creating a return value for a function.

As mentioned earlier, heap memory is not automatically reclaimed and persists beyond a function call.
Therefore, at some point before the program finishes, you must call free() on the address that you obtained
from calling malloc(). For example, to free the previous array of four integers: free(arr);. Failure to call
free() will result in a memory leak, where the heap memory allocated by malloc remains unavailable
even though it is no longer in use.

struct bear* makeStackOski() {
struct bear oski;
oski.name = "Oski"
oski.buddy = NULL;

/* Since oski is allocated on the stack,
its data is not guaranteed to persist
(i.e. may be garbage) after this function call */

return &oski;
}

struct bear* makeHeapOski() {
struct bear* oski = malloc(sizeof(struct bear));
oski->name = "Oski";
oski->buddy = NULL;

/* Since oski is allocated on the heap,
its data will persist after this function call */

return oski;
}

void oskiInMemory() {
struct bear* oskiGood = makeHeapOski();
struct bear* oskiBad = makeHeapOski();

/* Do some stuff */

free(oskiGood); /* Used heap memory is freed */
return; /* oskiBad hasn’t been freed -- memory leak! */

}

Figure 6: Using malloc()

6

