CS61C Fall 2019

NUMBER REPRESENTATION
e You can represent everything in bits. Given N bits, you can represent 2different things.
e There are five number representations we learned about in 61C. Assume you have N bits.
o Unsigned
m Smallest number: 0
m Largest number: 2N- 1
m You can only represent 0 and positive numbers, no negative numbers
o Sign and magnitude
m Smallest number: -28"+ 1
Largest number: 2N-'- 1
m The most significant bit is the sign bit and the remaining bits are used to
represent the magnitude.
e Positive numbers have a sign bit=0
e Negative numbers have a sign bit = 1
m There is a positive 0 (sign bit = 0, remaining bits are all 0) and negative 0 (sign bit
=1, remaining bits are all 0). Because of this redundancy, we can represent 1
less distinct number i.e. we can only represent 2N - 1 distinct numbers instead of
the usual 2. Which number are we unable to represent now?
e Because of the “negative” zero, we are able to represent one less
negative number i.e. we can only represent up to -2+ 1 instead of -2
e Example: Suppose N = 3.

BIT REPRESENTATION VALUE
000 +0

001 1

010 2

011 3

100 -0

101 P

110 2

111 -3

As can be seen above, we can only represent up to -2V'+ 1 = -2%1+ 1 =
-3 due to the redundancy of the 0 values.
o One’s complement

m Smallest number: -2 + 1

m Largest number: 2M'- 1

m When you negate a number in one’s complement, you simply flip the bits.

e Suppose N = 4. Negating Ob 0000 results in Ob 1111. The prior is the

positive 0 and the latter is the negative 0.

m Remember that positive numbers have leading Os and negative numbers have

leading 1s in one’s complement.

CS61C Fall 2019

o Two’s complement
m Smallest number: -2M
m Largest number: 2N - 1
m When negating a number in two’s complement, you flip the bits and add 1.
e Examples: Suppose N = 4.
o 0b 0000 = 0y,
m Flip— 0b 1111
m Add1—0b1111+ 0b 0001 =0b 1 0000 = 0b 0000
m Because we have 4-bit numbers, we only look at the four
least significant bits and consider the leading 1 to be
overflow. Negating 0 does indeed give us 0.
o 0b0100=4,,
m Flip— 0b 1011
m Addone — 0b 1011 + Ob 0001 = 0Ob 1100
m Using the formula for two’s complement, Ob 1100 = -(1
2+ (1*22)+(0*2")+(0*2°)=-8+4 +0+0=-4.
o 0b1100=-4,,
m Flip — 0b 0011
m Addone — 0b 0011 + Ob 0001 = Ob 0100
m Using the formula for two’s complement, Ob 0100 = -(0 *
2)+(1*29)+(0*2)+(0*2°)=0+4+0+0=4.
o Try out what happens when you try to negate the smallest (most
negative) number? When N=4, the smallest number is Ob 1000.
m You should get back the same number. Why? Because
we can represent one more negative number than
positive number in two’s complement. That means the
most negative number won’t have a positive counterpart
i.e. we can represent [-8, 7] when N = 4.

m If you want to practice adding numbers in two’s complement, here are some
practice problems: http://sandbox.mc.edu/~bennet/cs110/tc/add.html. It also
outlines the overflow rules and how to detect if it occurred.

o Biased (bias = B)

m Smallest number: 0 + B

m Largest number:2N-1+B

m Note that we get the smallest number in biased representation by taking the
smallest number in the unsigned representation and adding bias B. Similarly, to
get the largest number, we take the largest number in unsigned representation
and add bias B.

e Each of the five number representations can represent 2" things with N bits. Even for sign and
magnitude and one’s complement, you are technically representing 2" things. It just so happens
that the positive 0 and negative 0 evaluate to the same thing, so in the end you are only
representing 2V-1 distinct values.

e Note: If you add 1 to the largest number in ANY number representation, this results in overflow.
This addition will give you the smallest number in that number representation.

*

http://sandbox.mc.edu/~bennet/cs110/tc/add.html

