CS 61C: Great Ideas in Computer Architecture (Machine Structures)

Warehouse-Scale Computing, MapReduce, and Spark

Instructors:
Krste Asanović & Randy H. Katz

http://inst.eecs.berkeley.edu/~cs61c/
New-School Machine Structures

- **Parallel Requests**
 Assigned to computer
 e.g., Search “Randy Katz”

- **Parallel Threads**
 Assigned to core
 e.g., Lookup, Ads

- **Parallel Instruction**
 Perform
 >1 instruction @ one time
 e.g., 5 pipelined instructions

- **Parallel Data**
 >1 data item @ one time

- **Hardware descriptions**
 All gates @ one time

- **Programming Languages**

11/8/17
Agenda

• Warehouse-Scale Computing
• Cloud Computing
• Request-Level Parallelism (RLP)
• Map-Reduce Data Parallelism
• And, in Conclusion ...
Agenda

- Warehouse-Scale Computing
- Cloud Computing
- Request Level Parallelism (RLP)
- Map-Reduce Data Parallelism
- And, in Conclusion ...
Google’s WSCs

Ex: In Oregon
WSC Architecture

1U Server:
8 cores, 16 GiB DRAM, 4x1 TB disk

Rack:
40-80 servers, Local Ethernet (1-10Gbps) switch (30$/1Gbps/server)

Array (aka cluster):
16-32 racks
Expensive switch (10X bandwidth → 100x cost)
WSC Storage Hierarchy

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server

1U Server:
DRAM: 16GB, 100ns, 20GB/s
Disk: 2TB, 10ms, 200MB/s

Rack (80 severs):
DRAM: 1TB, 300µs, 100MB/s
Disk: 160TB, 11ms, 100MB/s

Array (30 racks):
DRAM: 30TB, 500µs, 10MB/s
Disk: 4.80PB, 12ms, 10MB/s
Google Server Internals
Take a walk through a Google data center
Power Usage Effectiveness

• Energy efficiency
 – Primary concern in the design of WSC
 – Important component of the total cost of ownership

• Power Usage Effectiveness (PUE):
 \[
 \text{Total Building Power} \quad \frac{\text{IT equipment Power}}{
 \]
 – Power efficiency measure for WSC
 – Not considering efficiency of servers, networking
 – Perfection = 1.0
 – Google WSC’s PUE = 1.2
Power Usage Effectiveness

PUE = Total Power / IT Power

PUE = 2.5
It is surprisingly hard to achieve high levels of utilization of typical servers (and your home PC or laptop is even worse).

Figure 1. Average CPU utilization of more than 5,000 servers during a six-month period. Servers are rarely completely idle and seldom operate near their maximum utilization, instead operating most of the time at between 10 and 50 percent of their maximum

Energy-Proportional Computing

“The Case for Energy-Proportional Computing,”
Luiz André Barroso, Urs Hölzle,
IEEE Computer
December 2007

Energy Efficiency = Utilization/Power

Figure 2. Server power usage and energy efficiency at varying utilization levels, from idle to peak performance. Even an energy-efficient server still consumes about half its full power when doing virtually no work.
Energy Proportionality

“The Case for Energy-Proportional Computing,”
Luiz André Barroso, Urs Hölzle,
IEEE Computer
December 2007

Energy Efficiency = Utilization/Power

Design for *wide dynamic power range and active low power modes*

Figure 4. Power usage and energy efficiency in a more energy-proportional server. This server has a power efficiency of more than 80 percent of its peak value for utilizations of 30 percent and above, with efficiency remaining above 50 percent for utilization levels as low as 10 percent.
Agenda

• Warehouse Scale Computing
• Cloud Computing
• Request Level Parallelism (RLP)
• Map-Reduce Data Parallelism
• And, in Conclusion ...
Scaled Communities, Processing, and Data
Quality and Freshness

Today’s Cloud

Future

Timeliness of Response

Accuracy of Response

More Accurate

More Timely

Better, Faster, More Timely Results

Increased Freshness Of Results

Google Translation Quality vs. Corpora Size

Test data BLEU

LM training data size, Million tokens

Target KN

+ ldcnews KN

+ webnews KN

Target SB

+ ldcnews SB

+ webnews SB

+ web SB
Cloud Distinguished by ...

- Shared platform with illusion of isolation
 - Collocation with other tenants
 - Exploits technology of VMs and hypervisors (next lectures!)
 - At best “fair” allocation of resources, but not true isolation

- Attraction of low-cost cycles
 - Economies of scale driving move to consolidation
 - Statistical multiplexing to achieve high utilization/efficiency of resources

- Elastic service
 - Pay for what you need, get more when you need it
 - But no performance guarantees: assumes uncorrelated demand for resources
Cloud Services

- **SaaS**: deliver apps over Internet, eliminating need to install/run on customer's computers, simplifying maintenance and support
 - E.g., Google Docs, Win Apps in the Cloud
- **PaaS**: deliver computing “stack” as a service, using cloud infrastructure to implement apps. Deploy apps without cost/complexity of buying and managing underlying layers
 - E.g., Hadoop on EC2, Apache Spark on GCP
- **IaaS**: Rather than purchasing servers, software, data center space or net equipment, clients buy resources as an outsourced service. Billed on utility basis. Amount of resources consumed/cost reflect level of activity
 - E.g., Amazon Elastic Compute Cloud, Google Compute Platform
Agenda

- Warehouse Scale Computing
- Cloud Computing
- Request-Level Parallelism (RLP)
- Map-Reduce Data Parallelism
- And, in Conclusion ...

11/8/17
Request-Level Parallelism (RLP)

• Hundreds of thousands of requests per second
 – Popular Internet services like web search, social networking, ...
 – Such requests are largely independent
 • Often involve read-mostly databases
 • Rarely involve read-write sharing or synchronization across requests
• Computation easily partitioned across different requests and even within a request
Google Query-Serving Architecture
Web Search Result

About 505,000 results (0.71 seconds)

Professor Randy H. Katz, CS Division, EECS Department, University of...
Anatomy of a Web Search (1/3)

• Google “Randy Katz”
 1. Direct request to “closest” Google Warehouse-Scale Computer
 2. Front-end load balancer directs request to one of many clusters of servers within WSC
 3. Within cluster, select one of many Google Web Servers (GWS) to handle the request and compose the response pages
 4. GWS communicates with Index Servers to find documents that contain the search words, “Randy”, “Katz”, uses location of search as well
 5. Return document list with associated relevance score
Anatomy of a Web Search (2/3)

• In parallel,
 – Ad system: books by Katz at Amazon.com
 – Images of Randy Katz
• Use docids (document IDs) to access indexed documents
• Compose the page
 – Result document extracts (with keyword in context) ordered by relevance score
 – Sponsored links (along the top) and advertisements (along the sides)
Anatomy of a Web Search (3/3)

• Implementation strategy
 – Randomly distribute the entries
 – Make many copies of data (aka “replicas”)
 – Load balance requests across replicas

• Redundant copies of indices and documents
 – Breaks up hot spots, e.g., “Justin Bieber”
 – Increases opportunities for request-level parallelism
 – Makes the system more tolerant of failures
Administrivia

• Project 3: Performance has been released!
 – Due Monday, November 20
 – Compete in a performance context (Proj5) for extra credit!

• HW5 was released; due Wednesday Nov 15

• Regrade requests are open
 – Due this Friday (Nov 10)
 – Please consult the solutions and GradeScope rubric first
Agenda

• Warehouse Scale Computing
• Cloud Computing
• Request Level Parallelism (RLP)
• Map-Reduce Data Parallelism
• And, in Conclusion ...
Data-Level Parallelism (DLP)

- SIMD
 - Supports data-level parallelism in a single machine
 - Additional instructions & hardware (e.g., AVX)
 e.g., Matrix multiplication in memory

- DLP on WSC
 - Supports data-level parallelism across *multiple machines*
 - MapReduce & scalable file systems
Problem Statement

• How process large amounts of raw data (crawled documents, request logs, ...) every day to compute derived data (inverted indices, page popularity, ...) when computation conceptually simple but input data large and distributed across 100s to 1000s of servers so that finish in reasonable time?

• Challenge: Parallelize computation, distribute data, tolerate faults without obscuring simple computation with complex code to deal with issues
Solution: MapReduce

• Simple data-parallel *programming model* and *implementation* for processing large datasets
• Users specify the computation in terms of
 – a *map* function, and
 – a *reduce* function
• Underlying runtime system
 – Automatically *parallelize* the computation across large scale clusters of machines
 – *Handles* machine *failure*
 – *Schedule* inter-machine communication to make efficient use of the networks

Inspiration: Map & Reduce Functions, ex: Python

Calculate: \[\sum_{n=1}^{4} n^2 \]

A = [1, 2, 3, 4]
def square(x):
 return x * x
def sum(x, y):
 return x + y
reduce(sum, map(square, A))
MapReduce Programming Model

- **Map**:
 \[(\text{in_key}, \text{in_value}) \rightarrow \text{list}(\text{interm_key}, \text{interm_val})\]

  ```
  map(in_key, in_val):
  // DO WORK HERE
  emit(intermediate_key, intermediate_val)
  ```

 - Slice data into “shards” or “splits” and distribute to workers
 - Compute set of intermediate key/value pairs

- **Reduce**:
 \[(\text{interm_key}, \text{list(interm_value)}) \rightarrow \text{list}(\text{out_value})\]

  ```
  reduce(intermediate_key, list(intermediate_value)):
  // DO WORK HERE
  emit(output_key, output_val)
  ```

 - Combines all intermediate values for a particular key
 - Produces a set of merged output values (usually just one)
MapReduce Execution

Fine granularity tasks: many more map tasks than machines

Bucket sort to get same keys together

2000 servers => ≈ 200,000 Map Tasks,
≈ 5,000 Reduce tasks
MapReduce Word Count Example

Distribute

that is that is that is that
that that that that that
Map 1 Map 2 Map 3 Map 4

is 1, that 1, that 1
is 1, is 1, is 1, is 1

that 1, that 1, is 1, is 1, is 1
that 1, that 1, is 1, is 1, that 1

Local Sort

Shuffle

is 1,1,1,1,1
it 1,1,1,1,1

Reduce 1

is 6; it 2

is 6; it 2; not 2; that 5

Collect

that 1,1,1,1,1
not 1,1,1,1,1

Reduce 2

not 2; that 5

is 6; it 2; not 2; that 5
MapReduce Word Count Example

Task of counting the number of occurrences of each word in a large collection of documents

User-written Map function reads the document data and parses the words. For each word, it writes the (key, value) pair of (word, 1). The word is treated as the intermediate key and the associated value of 1 means that we saw the word once.

Map phase: (doc name, doc contents) \(\rightarrow\) list(word, count)

// “I do I learn” \(\rightarrow\) [(“I”,1),(“do”,1),(“I”,1),(“learn”,1)]

map(key, value):
 for each word w in value:
 emit(w, 1)
MapReduce Word Count Example

Task of counting the number of occurrences of each word in a large collection of documents.

Intermediate data is then sorted by MapReduce by keys and the user’s **Reduce** function is called for each unique key. In this case, Reduce is called with a list of a "1" for each occurrence of the word that was parsed from the document. The function adds them up to generate a total word count for that word.

Reduce phase: (word, list(counts)) → (word, count_sum)

// ("I", [1,1]) → ("I",2)

```python
def reduce(key, values):
    result = 0
    for each v in values:
        result += v
    emit(key, result)
```

37
KEEP CALM AND FINISH STRONG
The Combiner (Optional)

• One missing piece for our first example:
 – Many times, the output of a single mapper can be “compressed” to save on bandwidth and to distribute work (usually more map tasks than reduce tasks)
 – To implement this, we have the combiner:

```java
combiner(interm_key, list(interm_val)):
  // DO WORK (usually like reducer)
  emit(interm_key2, interm_val2)
```
Our Final Execution Sequence

- **Map** – Apply operations to all input key, val
- **Combine** – Apply reducer operation, but distributed across map tasks
- **Reduce** – Combine all values of a key to produce desired output
MapReduce Processing Example: Count Word Occurrences

- Pseudo Code: for each word in input, generate <key=word, value=1>
- Reduce sums all counts emitted for a particular word across all mappers

map(String input_key, String input_value):
 // input_key: document name
 // input_value: document contents
 for each word w in input_value:
 EmitIntermediate(w, "1"); // Produce count of words

combiner: (same as below reducer)
reduce(String output_key, Iterator intermediate_values):
 // output_key: a word
 // intermediate_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v); // get integer from key-value
 Emit(output_key, result);
MapReduce Word Count Example (with Combiner)

Distribute

that that is is is is that that that that is is is is that that that that is
Map 1 Map 2 Map 3 Map 4
is 1, that 1 is 1, that 1 is 1, is 2, not 1 is 1, is 2, it 2, it 2, that 1

Shuffle

is 1,1,2,2 that 2,2,1
Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Collect

is 6; it 2; not 2; that 5

CocabSoot
1. MR 1st splits the input files into M “splits” then starts many copies of program on servers
2. One copy—the master—is special. The rest are workers. The master picks idle workers and assigns each 1 of M map tasks or 1 of R reduce tasks.
3. A map worker reads the input split. It parses key/value pairs of the input data and passes each pair to the user-defined map function.

(The intermediate key/value pairs produced by the map function are buffered in memory)
4. Periodically, the buffered pairs are written to local disk, partitioned into R regions by the partitioning function.
5. When a reduce worker has read all intermediate data for its partition, it bucket sorts using intermediate keys so that occurrences of same keys are grouped together. (The sorting is needed because typically many different keys map to the same reduce task.)
MapReduce Processing

6. Reduce worker iterates over sorted intermediate data and for each unique intermediate key, it passes key and corresponding set of values to the user’s reduce function.

The output of the reduce function is appended to a final output file for this reduce partition.

Shuffle phase
7. When all map tasks and reduce tasks have been completed, the master wakes up the user program. The MapReduce call in user program returns back to user code. Output of MR is in R output files (1 per reduce task, with file names specified by user); often passed into another MR job so don’t concatenate.
Big Data Frameworks: Hadoop & Spark

• Apache Hadoop
 – Open-source MapReduce Framework
 – Hadoop Distributed File System (HDFS)
 – MapReduce Java APIs

• Apache Spark
 – Fast and general engine for large-scale data processing.
 – Originally developed in the AMP lab at UC Berkeley
 – Running on HDFS
 – Provides Java, Scala, Python APIs for
 • Database
 • Machine learning
 • Graph algorithm
public static void main(String[] args) throws IOException {
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("wordcount");
 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);
 conf.setMapperClass(WCMap.class);
 conf.setCombinerClass(WCReduce.class);
 conf.setReducerClass(WCReduce.class);
 conf.setInputPath(new Path(args[0]));
 conf.setOutputPath(new Path(args[1]));
 JobClient.runJob(conf);
}

public class WCMap extends MapReduceBase implements Mapper {
 private static final IntWritable ONE = new IntWritable(1);
 public void map(WritableComparable key, Writable value,
 OutputCollector output,
 Reporter reporter) throws IOException {
 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 output.collect(new Text(itr.next()), ONE);
 }
 }
}

public class WCReduce extends MapReduceBase implements Reducer {
 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += (IntWritable) values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
}
Word Count in Spark’s Python API

// RDD: primary abstraction of a distributed collection of items
file = sc.textFile("hdfs://...")
// Two kinds of operations:
// Actions: RDD → Value
// Transformations: RDD → RDD
// e.g. flatMap, Map, reduceByKey
file.flatMap(lambda line: line.split())
 .map(lambda word: (word, 1))
 .reduceByKey(lambda a, b: a + b)

See http://spark.apache.org/examples.html
MapReduce Processing Time Line

<table>
<thead>
<tr>
<th>Process</th>
<th>Time ---------------></th>
</tr>
</thead>
<tbody>
<tr>
<td>User Program</td>
<td>MapReduce()</td>
</tr>
<tr>
<td>Master</td>
<td>... wait...</td>
</tr>
<tr>
<td>Worker 1</td>
<td>Assign tasks to worker machines...</td>
</tr>
<tr>
<td>Worker 2</td>
<td>Map 1</td>
</tr>
<tr>
<td>Worker 3</td>
<td>Map 2</td>
</tr>
<tr>
<td>Worker 4</td>
<td>Read 1.1</td>
</tr>
<tr>
<td></td>
<td>Read 2.1</td>
</tr>
</tbody>
</table>

- Master assigns map + reduce tasks to “worker” servers
- As soon as a map task finishes, worker server can be assigned a new map or reduce task
- Data shuffle begins as soon as a given Map finishes
- Reduce task begins as soon as all data shuffles finish
- To tolerate faults, reassign task if a worker server “dies”
Show MapReduce Job Running

• ~41 minutes total
 – ~29 minutes for Map tasks & Shuffle tasks
 – ~12 minutes for Reduce tasks
 – 1707 worker servers used

• Map (Green) tasks read 0.8 TB, write 0.5 TB
• Shuffle (Red) tasks read 0.5 TB, write 0.5 TB
• Reduce (Blue) tasks read 0.5 TB, write 0.5 TB
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 00 min 18 sec
323 workers, 0 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>0</td>
<td>323</td>
<td>878934.6</td>
<td>1314.4</td>
<td>717.0</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>0</td>
<td>323</td>
<td>717.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>72.5</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>145825686</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>506631</td>
</tr>
<tr>
<td>dups-in-index-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-operator-calls</td>
<td>508192</td>
</tr>
<tr>
<td>mr-operator-outputs</td>
<td>506631</td>
</tr>
</tbody>
</table>

Percent Completed

Reduce Shard

56
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 05 min 07 sec
1707 workers; 1 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>1857</td>
<td>1707</td>
<td>878934.6</td>
<td>191995.8</td>
<td>113936.6</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>0</td>
<td>500</td>
<td>113936.6</td>
<td>57113.7</td>
<td>57113.7</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>57113.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>699.1</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>349.5</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>5004411944</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>17290135</td>
</tr>
<tr>
<td>dups-in-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-operator-calls</td>
<td>17331371</td>
</tr>
<tr>
<td>mr-operator-outputs</td>
<td>17290135</td>
</tr>
</tbody>
</table>
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 10 min 18 sec
1707 workers; 1 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>5354</td>
<td>1707</td>
<td>878934.6</td>
<td>406020.1</td>
<td>241058.2</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>0</td>
<td>500</td>
<td>241058.2</td>
<td>196362.5</td>
<td>196362.5</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>196362.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>704.4</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>371.9</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>5000364228</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>17300709</td>
</tr>
<tr>
<td>dups-in-index-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-operator-calls</td>
<td>17342493</td>
</tr>
<tr>
<td>mr-operator-outputs</td>
<td>17300709</td>
</tr>
</tbody>
</table>
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 15 min 31 sec
1707 workers; 1 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>8841</td>
<td>1707</td>
<td>878934.6</td>
<td>621608.5</td>
<td>369459.8</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>0</td>
<td>500</td>
<td>369459.8</td>
<td>326986.8</td>
<td>326986.8</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>326986.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>706.5</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>419.2</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>4982870667</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>17229926</td>
</tr>
<tr>
<td>dups-in-index-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-operator-calls</td>
<td>17272056</td>
</tr>
<tr>
<td>mr-operator-outputs</td>
<td>17229926</td>
</tr>
</tbody>
</table>
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 29 min 45 sec
1707 workers; 1 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>13853</td>
<td>0</td>
<td>878934.6</td>
<td>878934.6</td>
<td>523499.2</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>195</td>
<td>305</td>
<td>523499.2</td>
<td>523389.6</td>
<td>523389.6</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>0</td>
<td>195</td>
<td>523389.6</td>
<td>2685.2</td>
<td>2742.6</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>0.3</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>0.5</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>45.7</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>2313178</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>7936</td>
</tr>
<tr>
<td>dups-in-index-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-merge-calls</td>
<td>1954105</td>
</tr>
<tr>
<td>mr-merge-outputs</td>
<td>1954105</td>
</tr>
</tbody>
</table>
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 33 min 22 sec
1707 workers; 1 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>13853</td>
<td>0</td>
<td>878934.6</td>
<td>878934.6</td>
<td>523499.2</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>500</td>
<td>0</td>
<td>523499.2</td>
<td>523499.5</td>
<td>523499.5</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>0</td>
<td>500</td>
<td>523499.5</td>
<td>263283.3</td>
<td>269351.2</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>1225.1</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>0</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>0</td>
</tr>
<tr>
<td>dups-in-index-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-merge-calls</td>
<td>51842100</td>
</tr>
<tr>
<td>mr-merge-outputs</td>
<td>51842100</td>
</tr>
</tbody>
</table>
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 35 min 08 sec
1707 workers; 1 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>13853</td>
<td>0</td>
<td>878934.6</td>
<td>878934.6</td>
<td>523499.2</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>500</td>
<td>0</td>
<td>523499.2</td>
<td>523499.5</td>
<td>523499.5</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>0</td>
<td>500</td>
<td>523499.5</td>
<td>390447.6</td>
<td>399457.2</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>1222.0</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>0</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>0</td>
</tr>
<tr>
<td>dups-in-index-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-merge-calls</td>
<td>51640600</td>
</tr>
<tr>
<td>mr-merge-outputs</td>
<td>51640600</td>
</tr>
</tbody>
</table>
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 37 min 01 sec
1707 workers; 1 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>13853</td>
<td>0</td>
<td>878934.6</td>
<td>878934.6</td>
<td>523499.2</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>500</td>
<td>0</td>
<td>523499.2</td>
<td>520468.6</td>
<td>520468.6</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>406</td>
<td>94</td>
<td>520468.6</td>
<td>512265.2</td>
<td>514373.3</td>
</tr>
</tbody>
</table>

Counter

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>849.5</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>0</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>0</td>
</tr>
<tr>
<td>dups-in-index-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-merge-calls</td>
<td>35083350</td>
</tr>
<tr>
<td>mr-merge-outputs</td>
<td>35083350</td>
</tr>
</tbody>
</table>
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 38 min 56 sec
1707 workers; 1 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>13853</td>
<td>0</td>
<td>878934.6</td>
<td>878934.6</td>
<td>523499.2</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>500</td>
<td>0</td>
<td>523499.2</td>
<td>519781.8</td>
<td>519781.8</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>498</td>
<td>2</td>
<td>519781.8</td>
<td>519394.7</td>
<td>519440.7</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>9.4</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>0</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>0</td>
</tr>
<tr>
<td>dups-in-index-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-merge-calls</td>
<td>394792</td>
</tr>
<tr>
<td>mr-merge-outputs</td>
<td>394792</td>
</tr>
</tbody>
</table>
MapReduce status: MR_Indexer-beta6-large-2003_10_28_00_03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 40 min 43 sec
1707 workers; 1 deaths

<table>
<thead>
<tr>
<th>Type</th>
<th>Shards</th>
<th>Done</th>
<th>Active</th>
<th>Input(MB)</th>
<th>Done(MB)</th>
<th>Output(MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>13853</td>
<td>13853</td>
<td>0</td>
<td>878934.6</td>
<td>878934.6</td>
<td>523499.2</td>
</tr>
<tr>
<td>Shuffle</td>
<td>500</td>
<td>500</td>
<td>0</td>
<td>523499.2</td>
<td>519774.3</td>
<td>519774.3</td>
</tr>
<tr>
<td>Reduce</td>
<td>500</td>
<td>499</td>
<td>1</td>
<td>519774.3</td>
<td>519735.2</td>
<td>519764.0</td>
</tr>
</tbody>
</table>

Counters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapped (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Shuffle (MB/s)</td>
<td>0.0</td>
</tr>
<tr>
<td>Output (MB/s)</td>
<td>1.9</td>
</tr>
<tr>
<td>doc-index-hits</td>
<td>0</td>
</tr>
<tr>
<td>docs-indexed</td>
<td>0</td>
</tr>
<tr>
<td>dups-in-index-merge</td>
<td>0</td>
</tr>
<tr>
<td>mr-merge-calls</td>
<td>73442</td>
</tr>
<tr>
<td>mr-merge-outputs</td>
<td>73442</td>
</tr>
</tbody>
</table>
And, in Conclusion ...

- Warehouse-Scale Computers (WSCs)
 - New class of computers
 - Scalability, energy efficiency, high failure rate
- Cloud Computing
 - Benefits of WSC computing for third parties
 - “Elastic” pay as you go resource allocation
- Request-Level Parallelism
 - High request volume, each largely independent of other
 - Use replication for better request throughput, availability
- MapReduce Data Parallelism
 - Map: Divide large data set into pieces for independent parallel processing
 - Reduce: Combine and process intermediate results to obtain final result
 - Hadoop, Spark