1 Floating Point

1. We can have +0 or -0. (The mantissa and exponent need to be 0, so we are free to change our sign bit).

\[0x8000 0000 \quad 0x0000 0000\]

-0 +0

2. Our exponent cannot be 255 since that would yield ±Inf or NaN. Thus, we need our exponent field to be 254. Subtracting our bias, we will be multiplying our mantissa by \(2^{254-127} = 2^{127}\). To maximize this we need our mantissa to be all 1's. Thus our value will be \(1.11\ldots1\cdot2^{127}\). Now to express this as a closed for value, we use a little math.

\[
0.11\ldots1 = \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^{23}} = \sum_{i=1}^{23} 2^{-i} = \frac{\frac{1}{2}(1-\left(\frac{1}{2}\right)^{23})}{1-\frac{1}{2}}
\]

\[
= \frac{1}{2} \cdot 2 \cdot (1 - \left(\frac{1}{2}\right)^{23}) = 1 - 2^{-23} \Rightarrow 1.11\ldots1 = 1 + 1 - 2^{-23} = 2 - 2^{-23}
\]

Thus, our closed form answer is \((2 - 2^{-23}) \cdot 2^{127}\). In hexadecimal,

\[
\begin{array}{c|c|c|c|c|c|c}
S & E & M & 1 & 1 & 1 & 1 \Rightarrow 0x7F7FFFFF
\end{array}
\]

Keep the above trick in mind, it is pretty useful.

3. We want to take advantage of denormalized values, since with them, we can obtain values < \(2^{-126}\). Our sign bit is 0 and our exponent field is also 0. We want a non-zero value and we know for denormalized values we don’t have an implicit leading 1. Thus, to make our mantissa as small as possible, we should set the 23rd bit to 1 ⇒ our number will be \(2^{-23} \cdot 2^{-126} = 2^{-149}\). In binary,

\[
\begin{array}{c|c|c|c|c|c|c|c}
S & E & M & 0 & 0 & 0 & 0 \ldots 01 & \Rightarrow 0x00000001
\end{array}
\]

4. If we want the smallest normalized value, we need our exponent field to be non-zero; let’s set it to 1. One actual power of 2 is now \(2^{1-127} = 2^{126}\). We now have an implicit leading 1 since we have normalized values so our mantissa can now be all 0’s. Since that will yield a value of 1.0…0. Thus, our value becomes

\[
\begin{array}{c|c|c|c|c|c|c|c}
S & E & M & 0 & 000\ldots0000 & \Rightarrow 0x00800000
\end{array}
\]

Thus, our number is

\[
0.0000000000011100000000 \cdot 2^{-126} \Rightarrow (2^{-12} + 2^{-13} + 2^{-14} + 2^{-15}) \cdot 2^{-126}
\]
5. 39.5625

$0.5625 = 0.5 + 0.0625 = \frac{1}{2} + \frac{1}{16} = 0b0.1001$

$39 = 0b100111$

$⇒ 39.5625 = 0b100111.1001$ In scientific notation, $1.001111001 \cdot 2^5$

39.5625 is clearly a normalized number.

$+1.001111001 \cdot 2^5 = +1.001111001 \cdot 2^{132-127}$

$S = 0$

$E = 132_{10} = 0b10000100$

$M = 0b00111100100\ldots0$

$0 \quad 00|001110|001|1110|00001|00000000$

$⇒ 0x421E4000$

$0xFF94BEEF$

$S = 0x1 \quad E = 0b11111111 = 255_{10} \quad M ≠ 0$

When $E = 255$, $M ≠ 0$, we have NaN.

$0x0000 0000$

$\left\{ \begin{array}{l}
 S = 0x0 \\
 E = 0x00 \\
 M = 0x0 \\
\end{array} \right\} \Rightarrow \text{This is } +0$

8.25

$0.25 = \frac{1}{4} = 0b0.01$

$2^{-1} \uparrow \uparrow 2^{-2}$

$8 = 0b1000$

$⇒ 8.25 = 1000.01$ Converting to scientific notation:

$1000.01 = 1.00001 \cdot 2^3$ (note: this is base 2, so we multiply by 2^k, $k ∈ Z$) 8.25 is clearly a normalized number

$⇒ +1.00001 \cdot 2^3 = +1.00001 \cdot 2^{130-127}$

$S = 0$

$M = 000010\ldots0$ (remember, there’s an implicit 1 so we only need everything after the decimal point)!

$E = 130_{10} = 10000010$

$⇒ \frac{0 \quad 00|0001|000000001|00\ldots0100|0\ldots0}{S \quad E \quad M} \Rightarrow 0x4104 0000$

$0x0000 0F00$

$S = 0x0$

$E = 0x0$

$M = 0b00000000 0000 1111 0000 0000 \rightarrow \text{E} = 0, \text{M} ≠ 0 \Rightarrow \text{a denormalized number.}$

$-∞$

$S = 0b1 \quad E = 0b1111 1111 \quad M = 0x0$
1. Let’s visualize how this system looks (simplified):

```
CPU 100% → L1 $ 20% → L2 $ 5% → MEM *
```

The L1 $ receives all accesses from the CPU, so its local miss/hit rate is also its global hit/miss rate.

If we have a global miss rate of 5% on L2 $, and the L1 $ misses 20% of its accesses, that means the L2 $ receives 20% of accesses globally, of which means its local miss rate is

\[M = \frac{\text{the amount of accesses it misses}}{\text{all accesses that reach the L2 $}} = \frac{0.05}{0.20} = 0.25 \]

2. Following the AMAT formula,

\[
\text{AMAT} = (\text{L1 $ hit time}) + (\text{Local L1 $ miss rate})(\text{L1 $ miss penalty})
\]

\[
= 2 + 0.20 ((\text{L2 $ hit time}) + (\text{Local L2 $ miss rate})(\text{L2 $ miss penalty}))
\]

\[
= 2 + 0.20 (15 + 0.25 \cdot 100) = 10
\]

Alternatively, we could consider how often we hit each cache globally; from the diagram in part 1:

\[
\text{AMAT} = (100\%)(\text{L1 $ hit time}) + (20\%)(\text{L2 $ hit time}) + (5\%)(\text{main memory hit time})
\]

\[
= 2 + 0.2 \cdot 15 + 0.5 \cdot 100 = 10
\]

Both answers yield the same answer (this is because \((\text{L1 $ local miss rate})(\text{L2 $ local miss rate}) = (\text{L2 $ global miss rate}) \))

3. Now our diagram looks like this:

```
CPU 100% → L1 $ 20% → L2 $ 25% → L3 $ 30% → Main Memory *
```

Following the AMAT equation:

\[
\text{AMAT} = (\text{L1 $ hit time}) + (\text{Local L1 $ miss rate})(\text{L1 $ miss penalty})
\]

\[
= 2 + 0.2 ((\text{L2 $ hit time}) + (\text{Local L2 $ miss rate})(\text{L2 $ miss penalty}))
\]
\[
= 2 + 0.2 \left(15 + 0.25 \left(\text{(L3 $ hit time)} + \left(\text{Local L3 $ miss rate)\text{(L3 $ miss penalty)}} \right) \right) \right)
\]

\[
= 2 + 0.2(15 + 0.25(H + 0.30 \cdot 100)) \leq 8
\]

can’t miss main mem

⇒ H ≤ 30, so the largest hit time we can have for our L3 $ while still having an 8 cycle AMAT is 30 cycles.