CS 61C:
Great |deas in Computer Architecture

Lecture 3: Pointers

Bernhard Boser & Randy Katz

http://inst.eecs.berkeley.edu/~cs61c

Agenda

* PointersinC

* Arrays in C

* This is not on the test
* Pointer arithmetic

* Strings, main

 And in Conclusion, ...

CS 61c Lecture 3: Pointers

Components of a Computer

Processor
Enable?
Address
l-l‘;l;b;lal S Write

[Arithmetic & Logic Unit] | [*Reag
(ALU) Data

\

Processor-Memory Interface |/O-Memory Interfaces

CS 61c Lecture 3: Pointers

Computer Memory
| Type | Name | Addr | Value _

108
. 107
int a; B—

105
a = -85; 104
103
102
101
100

printf(“%d”, a);

Do not confuse memory address and value.
Nor a street address with the person living there.

CS 61c Lecture 3: Pointers 4

Pointers
| Type | Name | Addr | Value

e C speak for “memory addresses”

* Notation 108
int *x; // variable xis an address to an int 107
inty=9; //yisanint 106
X = &Yy; // assign address of y to x 105

// “address operator” 104

intz =*x; //assignwhat xis pointingtotoz 103
// “dereference operator” 102

*x = -7; // assign -7 to what x is pointingto -
100

What are the values of x, y, z?

CS 61c Lecture 3: Pointers 5

Pointer Type

* Pointers have types, like other variables
— “type of object” the pointeris “pointingto”

* Examples:
—int *pi; // pointer to int
—double *pd; // pointer to double
—char *pc; // pointer to char

CS 61c Lecture 3: Pointers

Generic Pointer

* Generic pointer
— Points to any object (int, double, ...)

— Does not “know” type of object it references
(e.g. compiler does not know)

* Example:

- void *vp; // vp holds an address to
// object of "arbitrary” type

* Applications
— Generic functions e.g. to allocate memory

—malloc, free
= accept and return pointers of any type
= see next lecture

CS 61c Lecture 3: Pointers

Pointer to struct

// type declaration
typedef struct { int x, y; } Point;

// declare (and initialize) Point "object"
Point pt ={ 0, 5 };

// declare (and initialize) pointer to Point
Point xpt_ptr = &pt;

// access elements
(xpt_ptr).x = (xpt_ptr).y;

// alternative syntax
pPp—=X = pp—=Y,

CS 61c Lecture 3: Pointers

iIClickers

* We’ll start using them today

— Please get a clicker by Thursday,
9/8/2016

* You may also submit answers by
internet (REEF polling)

— Please get your 2 week trial right
away to track down problems
beforeyou pay

* Register your clicker on bcourses

* |[nstructions:
https://www.ets.berkeley.edu/dis
cover-services/clickers/students-
getting-started

CS 61c Lecture 3: Pointers 9

Your Turn!

#include <stdio.h>

“Type | Name | Addr | value

int main(void) {
int a =3, b =-7;

int *pa = &a, *pb = &b; 108
*pb = 5; —
if (xpb > xpa) a = xpa - b; 106
) printf(“a=%d b=%d\n", a, b); 105
104
A 3 -7 102
B 5 101
C 4 5 o
D -2 5
E 3 5

CS 61c 10

CS 61c

What's wrong with this Code?

#include <stdio.h>

int main(void) {

int aj;
int *p;
printf(“a = %d, p = %p, *p = %d\n",
a, p, *p);
return 0;
I3
Output:

a = 1853161526,
p = Ox7fff5be57c08,
*p=0

Lecture 3: Pointers

11

Pointers as Function Arguments
#include <stdio.h> | Type | Name | Addr | value

void f(int x, int xp) { 108
X =5; xp = -9;

107
’ 106
int main(void) { 105
inta=1, b = -3; 104
f(a, &b); 103
printf("a=%d b=%d\n", a, b); -

; 101
100

e C passes arguments by value

* j.e.it passesa copy
* valuedoesnot change outside function

 To pass by reference use a pointer

CS 61c Lecture 3: Pointers 12

Parameter Passing in Java

o uprimitive types” (int, Char, dOUble)
—by value (i.e. passes a copy)

* Objects
— by reference (i.e. passes a pointer)
—Java uses pointers internally
= But hides them from the programmer

—Mapping of variables to addresses is not defined in
Java language
= No address operator (&)
= Gives JVM flexibility to move stuff around

Your Turn!
| Type | Name | Addr | value

#include <stdio.h> 105
. . . 104
void foo(int *x, int xy) {
if (kx < xy) { 103
int t = *x; 102
¥X = kY;
} 100

}

tnt mada(void) { Answer | a | b | c
foo(&a, &b); 2 3 :

foo(&b, &c);
printf("a=%d b=%d\n", a, b);

v
m O O W >

2
3
2
1

N W W -
L R P W

CS 61c

* Pointersin C

* Arrays in C

* This is not on the test
* Pointer arithmetic

* Strings, main

 And in Conclusion, ...

CS 61c

Agenda

Lecture 3: Pointers

15

C Arrays
* Declaration: | Type | Name | Addr | Value

- // allocate space

// random content 108

int a[5]; 107

106

—// allocate & initialize 105

int b = { 3, 2, 1 }; 104

 Element access: 103

s o
—-a[2] = 7;

[2] ; 00

* Index of first element: O

CS 61c Lecture 3: Pointers 16

Beware: no array bound checking!

#include <stdio.h>

int main(void) {
int all ={ 1, 2, 3 };

for (int i=0; i<4; i++)
printf(“alsd] = %d\n", i, alil);

}
Output: a[0] = 1 Often the result is much worse:
a[l] = 2 * erratic behavior
a[2] = 3 e segmentation fault, etc.
 Cdoes not know array length!
a[3] = -1870523725

* Pass as argument into functions

CS 61c Lecture 3: Pointers 17

Use Constants, Not Literals

* Assign size to constant

— Bad pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

— Better pattern
const int ARRAY SIZE = 10;
int i, a[ARRAY SIZE];
for(i = 0; i < ARRAY SIZE; i++){ ... }

* “Single source of truth”
— Avoiding maintaining two copies of the number 10

— And the chance of changing onlyone
— DRY: “Don’t Repeat Yourself”

CS 61c Lecture 3: Pointers

Pointing to Different Size Objects

* Modern machines are “byte-addressable”

— Hardware’s memory composed of 8-bit storage cells,
each has a unique address

* Type declaration tells compiler how many bytes to fetch on
each access through pointer
— E.g., 32-bitinteger storedin 4 consecutive 8-bit bytes

short *y int *x char *z

59 58 57 56/55 54 53 52 51 50 49 48/47 46 45 44 43 /42 Byte address

\ J
—— Y -
16-bit short stored 32-bit integer 8-bit character
in two bytes stored in four bytes stored in one byte

CS 61c Lecture 3: Pointers 19

sizeof() operator

#include <stdio.h>

int main(void) { M
double d;
int array[5];
struct { short a; char c; } s; double: 8
printf(“double: %21lu\n", sizeof(d)); array: 20
printf(“array: 2lu\n", sizeof(array)); . 4
printf("s: %21u\n", sizeof(s)); *

}

* sizeof (type)
— Returns number of bytesin object

— Number of bitsin a byteis not standardized
= All modern computers: 8 bits per byte
= Some “old” computers use other values, e.g. 6 bits per "byte”

* By definition,inC
— sizeof (char)==

* For all other types result is hardware and compiler dependent
— Do not assume- Use sizeof!

CS 61c Lecture 3: Pointers

20

Agenda

* Pointersin C

* Arrays in C

* This is not on the test
* Pointer arithmetic

* Strings, main

 And in Conclusion, ...

CS 61c Lecture 3: Pointers

21

Be Considerate

* Chairs very noise when people get up

* Please:

—Do not leave now
—Do not leave during last 5 minutes of class

CS 61c Lecture 3: Pointers

22

-
c
Q
c
=]
=3
£
o

%
=]

($]
o

£
=
3

e
o
©

Y
3
c
1]

=
]

5

5
[

o

CS 61c

Number of Components Per Integrated Circuit

* Transistor™ cost as a function
of components per chip

— Minimum
— Shifts to right:

= Astime passes, cost decreases

provided we get more

= Fortunately we always had good

ideas to use more:
o Computers
o Memory
o Smartphones
o Internet of Things?

* Why a minimum?

— See me during office hours

* Transistors: basic elements making up computers (see later)

Lecture 3: Pointers

23

 Something useful that is getting always better and less
expensive is good for
— Society
— Business

CS 61c Lecture 3: Pointers 24

Benefits and Drawbacks of Moore’s Law

Lecture 3: Pointers

* Pointersin C

* Arrays in C

* This is not on the test
* Pointer arithmetic

* Strings, main

 And in Conclusion, ...

CS 61c

Agenda

Lecture 3: Pointers

26

Pointer Arithmetic - char

int main(void Addr*

) {
char c[]l ={ 'a', 'b" };
char xpc = c;

pC++; 108
printf("xpc=%c\n c=%p\npc=%p\npc—-c=%1d\n",

*pc, €, pc, pc-c); 107
106
int i[l = { 10, 20 };
int xpi = 1i; 105
pi++;
printf("spi=%d\n i=%p\npi=%p\npi-i=%ld\n", 104
102
*pc = Db 101
C = 0x7f£f£f50f54b3e 100
pcC = 0x7ff£f50£54b3f
pc-c =1
CS 61c .

*Computer only uses byte addresses. Tables with blue headers are simplifications.

Pointer Arithmetic - 1nt

int main(void Addr

) {
char c[]l ={ 'a', 'b" };
char xpc = c;

pC++; 108
printf("xpc=%c\n c=%p\npc=%p\npc—-c=%1d\n",

*pc, €, pc, pc-c); 107
106
int i[l = { 10, 20 };
int xpi = 1i; 105
pi++;
printf(“xpi=%d\n i=%p\npi=%p\npi-i=%ld\n", 104
}
102
*pi = 20 101
i = 0x7f££f£50£54b40 100
pi = 0x7ff£50£54b44
pi-i =1

CS 61c Lecture 3: Pointers 28

Array Name / Pointer Duality

* Array variable is a “pointer” to the first (0th) element

* Can use pointers to access array elements

—char *pstr and char astr[] are nearlyidentical
declarations

— Differ in subtle ways: astr++ isillegal

* Consequences:
— astris an array variable, but works like a pointer
—astr[0] isthe same as *astr
—astr[2] isthe same as * (astr+2)
— Can use pointerarithmetic to access array elements

Arrays versus Pointer Example

#include <stdio.h>

int main(void) { mm

// array indexing
int all = { 10, 20, 30 };

printf("alll=%d, *(p+1)=%d, p[2]=%d\n", 104
a[l], *(a+1), x(&al2])); 103
// pointer arithmetic
int *p = a; 102
p++;
*p = 22; 101
pl-1] = 11;
for (int i=0; 1i<3; i++)
printf(“al%sd! = %d, ", i, alil);
}
Output:

a[l]=20, *(p+1)=20, p[2]=30
a[0]=11, a[l]=22, a[2]=33

Mixing pointer and array notation can be confusing = avoid.

CS 61c Lecture 3: Pointers 30

Pointer Arithmetic

* Example:
int n = 3;
int *p;
p += n; // adds n*sizeof(int) to p
P -= n; // subtracts n*sizeof(int) from p

e Use only for arrays. Never:
char *p;
char a, b;
p = &aj;
p += 1; // may point to b, or not

CS 61c Lecture 3: Pointers 31

Arrays and Pointers

* Array= pointertotheinitial (Oth)array

element

ali] * (a+1)

* An arrayis passedtoa function as a pointer

* The array size (# of bytes) is lost!

* Usuallybad styleto interchange arrays and

pointers

CS 61c

Passing arrays:

explicitly

Really int *array ,
pass size

\
int \
foo (int arrayl|],

unsigned int size)

.. array[size - 1] ..

int
main (void)
{
int a[10], b[5];

. foo(a, 10).. foo(b, 5) ..

Lecture 3: Pointers

32

Arrays and Pointers

int
foo (int arrayl|],

unsigned int size)

What does this print? 8

- - /
printf (“*%d\n”, sizeof (array)) ; | .
) ... because array isreally

a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
“64 bit” machines!)

int

main (void)

{
int a[10], b[5];
. foo(a, 10).. foo(b, 5) .. | What does this print? 40
printf (“%d\n”, sizeof(a)); « | (provided sizeof (int)==4)
}

CS 61c Lecture 3: Pointers 33

Arrays and Pointers

These code sequences have the same effect:

int 1i;

int array(s]; | Name | Type | Addr | Value

for (i = 0; i < 5; i++)

106

{ i 105
arrayl[i] = ..;

} 104

103

int *p; 102

int array|[5]; pp—

o €2)€ e DS
{
}

CS 61c Lecture 3: Pointers 34

Point past end of array?

* Array size n; want to access from 0 to n-1, but test for
exit by comparing to address one element past the array

const int SZ = 10;

int ar[SZ], *p, *gq, sum = 0;

p = &ar[0]; g = &ar([SZ];

while (p !'= qg){
/ sum = sum + *p; p=p + 1;
sum += *p++;

}

* |s this legal?
e C defines that one element past end of array

,i.e., not cause an error

Valid Pointer Arithmetic

» Add/subtract an integer to/from a pointer
 Difference of 2 pointers (pointing elements in to same array)
 Compare pointers (<, <=, ==, I=, >, >=)

* Compare pointerto NULL
(indicates that the pointer points to nothing)

Everything makes no sense & is illegal:
* adding two pointers

* multiplying pointers

e subtract pointer from integer

Your Turn ...
int x[] = { 2, 4, 6, 8, 10 };
int *p = x;
int **pp = &p; | Name | Type | Addr | Value
(*pp)++; -

106
(*(*PP)) ++; 05
printf("%d\n", *p); 104
103
Outputis: —
A: 2 —
B:3 100
C: 4
D:5

E: None of the above

37

CS 61c

Pointers to Pointers

#include <stdio.h>

// changes value of pointer
void next_el(int xxh) {

*h = xh + 1;
s

int main(void) {
int A[]l = { 10, 20, 30 };
// p points to first element of A
int *p = A;
next_el(&p);
// now p points to 2nd element of A
printf("+p = %d\n", *p);

Lecture 3: Pointers

38

* Pointersin C

* Arrays in C

* This is not on the test
* Pointer arithmetic

* Strings, main

 And in Conclusion, ...

CS 61c

Agenda

Lecture 3: Pointers

39

C Strings

Sl
e C strings are null- Al

terminated character —
alrrays 107

—char s[] = "abc”; 106
105

104
103
102
101
100

CS 61c Lecture 3: Pointers 40

String Example

#include <stdio.h>

int slen(char s[]) {

int n = 0;
while (s[n] != @) n++;
return n;

}

int main(void) {
char strl[] = "ghg';
printf(“str = %s, length = %d\n", str, slen(str));

Output: str=abc, length=3

CS 61c Lecture 3: Pointers 41

Concise strlen()

int strlen(char *s) {
char *p = s;
while (*p++)
; /* Null body of while */

return (p - s - 1);

What happens if there is no zero character at end of string?

CS 61c Lecture 3: Pointers 42

Arguments inmain()

* To get arguments to the main function, use:
—1int main(int argc, char *argv[])
— argc isthe number of strings on the command line
— argv is a pointer to an array containingthe arguments as strings

#include <stdio.h>
int main(int argc, char xargv[]) {

for (int i=0; i<argc; i++)
printf(“arglsd] = %s\n", 1, argvl[il);

CS 61c Lecture 3: Pointers 43

Example

#include <stdio.h>

int main(int argc, char xargv[]) {
i<argc; i++)

for (int 1=0;

printf(“grg[%d]

= %s\n", 1, argvl[i]);

UNIX: §$ gcc -0 ex Argc.c
S ./ex -g a "d e f”

arg
arg
arg
arg

CS 61c

0

17
2
'3

./ex
-g
a
de f

Lecture 3: Pointers 44

Your Turn

#include <stdio.h>

int twiddlel(int *xp, int xyp) {

tudddled (ir A 4 4 4 4

XXp += Xyp;

return *xp; B 4 4 8 6
¥

C 8 6 8 6

int twiddle2(int *xp, int xyp) {

*Xp += 2 % (xyp); D 4 4 6 6

return *xp;
¥ E 4 4 8 8
int main(void) {

int a, b;

a=0; b=2; printf("sd ", twiddlel(&a, &b));

a=0; b=2; printf("sd ", twiddle2(&a, &b));

a=0; b=2; printf("sd ", twiddlel(&b, &b));

a=0; b=2; printf("sd\n”, twiddle2(&b, &b));

CS 61c Lecture 3: Pointers 45

* Pointersin C

* Arrays in C

* This is not on the test
* Pointer arithmetic

* Strings, main

 And in Conclusion, ...

CS 61c

Agenda

Lecture 3: Pointers

46

And in Conclusion, ...

* Pointers are “C speak” for machine memory addresses

* Pointer variables are held in memory, and pointer values
are just numbers that can be manipulated by software

* In C, close relationship between array names and pointers

* Pointers know the type & size of the object they point to
(except void *)
* Like most things, pointers can be used for
— Pointers are powerful

— But, without good planning, a major source of errors
— Plenty of examples in the next lecture!

