
CS61C Fall 2015 Discussion 7 – Pipelined CPU
__
Pipelined CPU Design
Now, we will optimize a single cycle CPU using pipelining. Pipelining is a powerful logic design
method to reduce the clock time and improve the throughput, even though it increases the
latency of an individual task and adds additional logic. In a pipelined CPU, multiple instructions
are overlapped in execution. This is a good example of parallelism, which is one of the great ideas
in computer architecture. To obtain a pipelined CPU, we will take the following steps.

Step 1: Pipeline Registers
Pipelining starts from adding pipelining registers by dividing a large combinational logic. We
have already chopped a single cycle CPU into five stages, and thus, will add pipeline registers
between two stages.

Step 2: Performance Analysis
A great advantage of pipelining is the performance improvement with a shorter clock time. We
will use the same timing parameters as those in the previous discussion.

Element Register
clk-to-q

Register
Setup MUX ALU Mem

Read
Mem
Write

RegFile
Read

RegFile
Setup

Parameter tclk-to-q tsetup tmux tALU tMEMread tMEMwrite tRFread TRFsetup

Delay(ps) 30 20 25 200 250 200 150 20

Q1. What was the clock time and frequency of a single cycle CPU?
tclk,single >= tPC, clk-to-q + tIMEMread + tRFread + tALU + tDMEMread + tmux + tRFsetup
 = 30 + 250 + 150 + 200 + 250 + 25 + 20 = 925 ps
fclk,single = 1/tclk,pipe <= 1/ (925 ps) = 1.08 GHz
Q2. What is the clock time and frequency of a pipelined CPU?

fclk,pipe = 1/tclk,pipe <= 1/ (300 ps) = 3.33 GHz
Q3. What is the speed-up? Why is it less than five?
Speed-up = tclk,pipe / tclk,single = fclk,pipe / fclk,single = 3.08.
This is because pipeline stages are not balanced evenly and there is overhead from pipeline
registers (tclk-to-q, tsetup). Moreover, this does not include the delays from the additional logic for
hazard resolution.

CS61C Fall 2015 Discussion 7 – Pipelined CPU
__
Step 3: Pipeline Hazard
The performance improvement comes at a cost. Pipelining introduces pipeline hazards we have
to overcome.

Structural Hazard
Structural hazards occur when more than one instruction use the same resource at the same time.
• Register File: One instruction reads from the register file while another writes to it. We can

solve this by having separate read and write ports and writing to the register file at the falling
edge of the clock.

• Memory: The memory is accessed not only for the instruction but also for the data. Separate
caches for instructions and data solve this hazard.

Data Hazard and Forwarding
Data hazards occur due to data dependencies among instructions. Forwarding can solve many
data hazards.
Q1. Spot the data dependencies in the code below and figure out how forwarding can resolve
data hazards.

Instruction C0 C1 C2 C3 C4 C5 C6
addi $t0, $s0, -1 IF REG EX MEM WB
and $s2, $t0, $a0 IF REG EX MEM WB
sw $s0, 100($t0) IF REG EX MEM WB

The REG step for instructions 2 and 3 depend on data in the registers only available after the WB
step of instruction 1. We can forward the ALU output of the first instruction to the EX stages of
future instructions
Q2. In general, under what conditions will an EX stage need to take in forwarded inputs from
previous instructions? Where should those inputs come from in regards to the current cycle?
Assume you have the signals ALUout(n), rt(n), rs(n), regWrite(n), and regDst(n), where n is 0
for the signal of the current instruction being executed by the EX stage, -1 for the previous, etc.
Forward ALUout(-1) if (rt(0) == regDst(-1) || rs(0) == regDst(-1)) && regWrite(-1)
Forward ALUout(-2) if (rt(0) == regDst(-2) || rs(0) == regDst(-2)) && regWrite(-2)
Forward ALUout(-3) if (rt(0) == regDst(-3) || rs(0) == regDst(-3)) && regWrite(-3)

CS61C Fall 2015 Discussion 7 – Pipelined CPU
__

Data Hazard and Stall
Forwarding cannot solve all data hazards. We need to stall the pipeline in some cases.
Q1. Spot the data dependencies in the code below and figure out why forwarding cannot
resolve this hazard.

Instruction C0 C1 C2 C3 C4 C5
lw $t0, 20($s0) IF REG EX MEM WB

addiu $t1, $t0, $t0 IF REG EX MEM WB

The add instruction needs the value of $t0 in the beginning of C3, but it is ready at the end of C3.
Q2. Now we stall the pipeline one cycle and insert nop after the lw instruction. Figure out how
this can resolve the hazard.

Instruction C0 C1 C2 C3 C4 C5 C6
lw $t0, 20($s0) IF REG EX MEM WB

nop IF REG EX MEM WB
addiu $t1, $t0, $t0 IF REG EX MEM WB

By stalling one cycle, the add instruction can start its execution stage after the $t0 value is ready.
Q3. Under what conditions do we need to introduce a nop? Under what conditions do we need
to forward the output of the MEM stage to the EX stage? Assume you have the signals
memToReg(n), rt(n), rs(n), regWrite(n), and regDst(n), where n is 0 for the signal of the current
instruction being executed by the EX stage, -1 for the previous, etc.
We forward if (rt(0) == regDst(-2) || rs(0) == regDst(-2)) && memToReg(-2) && regWrite(-2)

Control Hazard and Prediction
Control hazards occur due to jumps and branches. We may solve them by stalling the pipeline.
However, it is painful since the branch condition is calculated after the execution stage and the
pipeline is stalled for three cycles. Instead, we add a branch comparator inside the register read
stage and introduce the branch delay slot, and redefine MIPS so that the instruction after a
branch statement will always be executed.

Q1. Reorder the following sets of instructions to account for the branch delay slot. You may
have to insert a nop instruction.

Set 1 Reordered set 1 Set 2 Reordered Set 2
addiu $t0, $t1, 5 addiu $t0, $t1, 5 addiu $t0, $t1, 5 addiu $t0, $t1, 5
ori $t2, $t3, 0xff beq $t0, $s0, label ori $t2, $t3, 0xff ori $t2, $t3, 0xff

beq $t0, $s0, label ori $t2, $t3, 0xff beq $t0, $t2, label beq $t0, $t2, label
lw $t4, 0($t0) lw $t4, 0($t0) lw $t4, 0($t0) nop

 lw $t4, 0($t0)

