
CS61C Spring 2015 Discussion 11 – Warehouse Scale Computing and Spark
__
Warehouse Scale Computing
1. Amdahl’s Law
1) You are going to train the image classifier with 50,000 images on a WSC having more than
50,000 servers. You notice that 99% of the execution can be parallelized. What is the speedup?

2. Failure in a WSC
1) In this example, a WSC has 55,000 servers, and each server has four disks whose annual failure
rate is 4%. How many disks will fail per hour?

2) What is the availability of the system if it does not tolerate the failure? Assume that the time to
repair a disk is 30 minutes.

3. Performance of a WSC

 Local Rack Array
DRAM latency (us) 0.1 100 300

Global hit rate 90% 9% 1%
DRAM bandwidth (MiB/sec) 20,000 100 10
Disk bandwidth (MiB/ sec) 200 100 10

1) Calculate the AMAT of this WSC. What is vital for WSC performance?

2) How long does it take to transfer 1,000 MiB a) between disks within the server, and b) between
DRAM within the rack? What can you conclude from this example?

4. Power Usage Effectiveness (PUE) = (Total Building Power) / (IT Equipment Power)
Sources speculate Google has over 1 million servers. Assume each of the 1 million servers draw
an average of 200W, the PUE is 1.5, and that Google pays an average of 6 cents per kilowatt-hour
for datacenter electricity.
1) Estimate Google’s annual power bill for its datacenters.

2) Google reduced the PUE of a 50,000 machine datacenter from 1.5 to 1.25 without decreasing
the power supplied to the servers. What’s the cost savings per year?

CS61C Spring 2015 Discussion 11 – Warehouse Scale Computing and Spark
__
Map Reduce
Use pseudocode to write MapReduce functions necessary to solve the problems below. Also,
make sure to fill out the correct data types. Some tips:
• The input to each MapReduce job is given by the signature of the map() function.
• The function emit(key+k,+value+v) outputs the key-value pair (k,+v).
• The for(var+in+list) syntax can be used to iterate through Iterables or you can call the
hasNext() and next() functions.
• Usable data types: int,+float,+String. You may also use lists and custom data types
composed of the aforementioned types.
• The method intersection(list1,+list2) returns a list that is the intersection of list1 and
list2.

1. Given the student’s name and the course taken, output each student’s name and total GPA.
Declare+any+custom+data+types+here:+
CourseData:+
++++int+courseID+

float+studentGrade++//+a+number+from+084+
+

map(String+student,+CourseData+value):+
++
+
+
+
+
+
+
+

reduce(+String+key,++
+++++Iterable<+float+>+values):+
+

2. Given a person’s unique int ID and a list of the IDs of their friends, compute the list of mutual
friends between each pair of friends in a social network.
Declare+any+custom+data+types+here:+
FriendPair:+
int+friendOne+
int+friendTwo+

+
map(int+personID,+list<int>+friendIDs):+
+
+
+
+
+
+
+

+
+
+
+
+

reduce(+FriendPair+key,++
+++++Iterable<+list<int>+>+values):+
+
+
+
+
+

CS61C Spring 2015 Discussion 11 – Warehouse Scale Computing and Spark
__
3. a) Given a set of coins and each coin’s owner, compute the number of coins of each
denomination that a person has.
Declare'any'custom'data'types'here:'
CoinPair:+
++String+person+
++String+coinType+
!
map(String+person,+String+coinType):+
'
!
!
!
!
!

reduce(CoinPair+key,++
+++++++Iterable<+int+>+values):+
+
+
+
+
+
+
'
'
'
'

b) Using the output of the first MapReduce, compute the amount of money each person has. The
function valueOfCoin(String+coinType) returns a float corresponding to the dollar value of
the coin.
map(CoinPair+key,+int+amount):+
+
+
+
+
+
+
+

reduce(String+key,++
+++++++Iterable<+float+>+values):+
++
+
+
+
+
+
+
+
+
+
+

CS61C Spring 2015 Discussion 11 – Warehouse Scale Computing and Spark
__
Spark
• RDD: primary abstraction of a distributed collection of items
• Transforms: RDD ! RDD

map(func)+ Return a new distributed dataset formed by passing each element of
the source through a function func.

flatMap(func)+ Similar to map, but each input item can be mapped to 0 or more
output items (so func should return a Seq rather than a single item).

reduceByKey(func)+
When called on a dataset of (K,V) pairs, returns a dataset of (K,V)
pairs where the values for each key are aggregated using the given
reduce function func, which must be of type (V,V)+=>+V.

• Actions: RDD ! Value

reduce(func)+ Aggregate the elements of the dataset regardless of keys using a
function func

1. Implement Problem 1 of MapReduce with Spark
#+students:+list((studentName,+courseData))+
studentsData+=+sc.parallelize(students)+
out+=+studentsData.map(lambda+(k,+v):+(k,+(v.studentGrade,+_____)))++
+
+
+
+
+

2. Implement Problem 2 of MapReduce with Spark
def+genFriendPairAndValue(pID,+fIDs):+
++return+[((pID,+fID),+fIDs)+if+pID+<+fID+else+(fID,+pID)+for+fID+in+fIDs]+
def+intersection(l1,+l2):+
++return+[x+for+x+in+b1+if+x+in+b2]+
#+persons:+list((personID,+list(friendID))+
personsData+=+sc.parallelize(persons)+

+
+
+
+
+

3. Implement Problem 3 of MapReduce with Spark
#+coinPairs:+list((person,+coinType))+
coinData+=+sc.parallelize(coinPairs)+
+
+
+
+
+
+
+
+

