CS61c Midterm Review (fa06) answers
 Number representation and Floating points

Somewhat-Trivial Questions:

1) What is $0 x f f f f$ ffff in decimal form (you can use $* 2^{y}$ in your answer)

- Unsigned int:
- Sign and magnitude:

$2^{32}-1$
$-2^{31}-1$
-0
-1

2) J-Lo whispers her age to you: "Thirty six". Was that big-endian or little-endian (mt fa05) Big-Endian
3) Let $x=0 x f f f f$ ffff. What is the decimal value (if any) using Single Precision floats?

NaN .
4) Let $x=0 x 00400000$. What is the decimal value (if any) using Single Precision floats? 2^{-127}.
5) What is a mebi? 2^{20}.
6) Let $x=0 x 40000000, y=0 x 3 f 800000$. What is $x+y$? (truncate)

3

Conceptual/Midterm type Questions:

7) Let $x=0 x 40000000, y=0 x 00400000$. What is $x+y$? (truncate)

2 .
8) What is minimum positive float x such that $x+1=x$ (You've done this before in lab, and this has been on the Midterm before!)

$$
\mathrm{X}=2^{24}=0 \mathrm{~b} 4 \mathrm{~b} 800000
$$

9) True/False: Float arithmetic is associative. i.e. $(x+y)+z=x+(y+z)$. If not, show a counterexample. $\mathrm{X}+1+1=2^{24}+1+1$
10) Let $x=$ Mebi, find y such that $x+y$ have $0 x b 11$ in the rounding bits on the alignment step (assume there are 2 such bits)
i.e. $\mathrm{x}=1 . * \mid 00 * 2^{\mathrm{n}}$
$y=* . * \mid 00 * 2^{\mathrm{n}}$
$\mathrm{x}+\mathrm{y}=* . * \mid 11 * 2^{\mathrm{n}}$
$\mathrm{x}=2^{20}$
$x=1 * 2^{20+127}=0 x 49800000$
easiest to find $\mathrm{x}+\mathrm{y}=1.000 \ldots .0 \mid 11 * 2^{20}$
thus $y=0.00 \ldots 0 \mid 11 * 2^{20}=2^{20 *}\left(2^{-24}+2^{-25}\right)$
$=2^{-4 *} 2^{-5}$
$=2^{-4 *}\left(1+\frac{1}{2}\right)$
$y=0 \times 3 \mathrm{dc} 00000$

- Compute $x+y$, using truncation.

$$
\begin{aligned}
\mathrm{x}+\mathrm{y} & =1.000 \ldots .0 \mid 11 * 2^{20} \\
= & 1.000 \ldots .0 * 2^{20} \\
& =2^{20}=0 \times 49800000
\end{aligned}
$$

- Compute $x+y$ using "Round to zero"

$$
x+y=1.000 \ldots . .0 \mid 11 * 2^{20}
$$

$$
\begin{aligned}
& =1.000 \ldots .0 * 2^{20} \\
& =2^{20}=0 \times 49800000
\end{aligned}
$$

- Compute $x+y$ using "round to Plus Infinity"

$$
\begin{aligned}
\mathrm{x}+\mathrm{y} & =1.000 \ldots .0 \mid 11 * 2^{20}=2^{20}=0 \times 49800000 \\
& =1.000 \ldots .1 * 2^{20} \\
& =\left(1+2^{-23}\right) * 2^{20} \\
& =2^{20}+1 / 8=0 \mathrm{x} 49800001
\end{aligned}
$$

From Dan's previous Midterm (fa05)
a) Your favorite 32 -bit hex quantity is 0×80000008. For each of the encodings, tell us what the decimal value of this number is, and where on a linear, finite number line (LFNL) that number would lie given all the possible finite numbers that can be encoded. There are five dashed marks on our LFNL: the leftmost dash marks "min", the smallest encodable finite value (closest to $-\infty$) and the rightmost dash marks "max", the largest. The middle dash marks the halfway point between min and max (not necessarily zero!), and the other two dashes mark $1 / 4$ and $3 / 4$ of the distance from min to max. If the mark you make falls pretty much on one of the existing dashed marks, in the space below the LFNL circle whether (if we were to zoom in) your mark would be to the "LEFT", "ON", or to the "RIGHT" of our dashed mark. E.g., if the 32 -bit hex quantity were 0×0, the Sign-magnitude we'd put our mark directly on the middle dashed mark and circle "ON". If it were 0×1, it's be the same mark but we'd circle "RIGHT". Remember, this number line is linear \& finite! Show your work.

b) What is min, max, and positive min (greater than 0) for each of the types specified above?

Type:	Min	\max	positive (normalized) min (>0)
Unsigned int	0	$2^{32}-1$	1
Sign-Magnitude	$-\left(2^{31}-1\right)$	$2^{31}-1$	1
2s complement	-2^{31}	$2^{31}-1$	1
Float			2^{-126}

c) What is the largest (unsigned) integer that a float/double can store?
float: $2^{8}+2^{9}+\ldots+2^{31}=2^{31} *\left(\sum_{i=0}^{23} 2^{-i}\right)=2^{31} *\left(1+\sum_{i=1}^{23} 2^{-i}\right)=0 \mathrm{x} 4 \mathrm{f} 7 \mathrm{fffff}$
double: $2^{32}-1=\sum_{i=0}^{31} 2^{i}=0 x 41 \mathrm{e}$ ffff fffc 00000000000000000000
d) What is the largest (unsigned) integer that float/double can't store?
float: $2^{32}-1$ double: none.

