
CS61c Midterm Review (fa06)
Number representation and Floating points

 From your friendly reader 

Number representation (See: Lecture 2, Lab 1, HW#1)
• KNOW: Kibi (210), Mebi(220), Gibi(230), Tebi(240), Pebi(250), Exbi(260), Zebi(270), Yobi (280)
• Know the Binary (0b), Octal (0), Decimal, Hexadecimal (0x) representation of numbers.

o Example: 11112 = 178 = 15ten = Fhex

 or 0b1111 = 017 = 15 = 0xF
• Know how to convert from one base to another. Example: 1045 =4*50+0*51+1*52 = 29ten
• Know what is a bit, a Nibble, a Byte, a Word

o Example: above example uses a Nibble!
• The lecture presents the evolution of number representation: sign and magnitude, one’s

complement, two’s complement

o Sign and Magnitude:
*Left most bit represents the sign (0 == positive, 1 == negative), the rest represents
magnitude.
*In order to negate, flip the left most bit.
* Can represent from –(2N-1-1) to 2N-1-1

Cons:
*We have two zeros, namely 0x00000000 and 0x80000000
*Arithmetic is non-trivial
*Number comparison is non trivial (-2 > -1)

o One’s Complement
*Left most bit represents the sign.
*In order to negate, must flip all the bits.
* Can represent from –(2N-1-1) to 2N-1-1

Cons:
* Still have two zeros.
* (x + (-x)) != 0, thus arithmetic is still complicated.

o Two’s Complement (standard)
*Left most bit represents the sign.
*In order to negate must flip bits and add 1.  -x = flip_bits(x) +1
* Can represent from –2N-1 to 2N-1-1

• Unsigned numbers can represent from 0 to 2N-1
• Know overflow: there isn’t enough bits to express a number. E.g: MAX+1 causes overflow
• Big-Endian vs Little-Endian

o Refers to the order in which BYTES are stored in memory
o bits of the byte are stored as usual
o Big-Endian: Big Units first (are on the left)

Example: today’s date representation in big-endian is 06/10/15

o Little-Endian: Little Units first.
Example: today’s date representation in little-endian is 15/10/06

Floating points (See: Lecture 15 and 16, Lab 6)
• S Exponent Significand | rounding_bits

o Significand also known as the Mantissa
o Bias: in order to be able to represent tiny and huge values, usually is 2e-1-1 for

normalized numbers, where e is number of bits for E
o Rounding bits: there are usually extra bits tagged on after the Significand in order to

correct for rounding errors when doing arithmetic
o Single Precision (32 bits): S is 1 bit, E is 8 bits, S is 23 bits, bias = 27-1 = 127
o Double Precision (64 bits): S is 1 bit, E is 11 bits, S is 52 bits, bias = 28-1 = 1023

• Exponent size vs. Signficand size range vs. precision

• Important to know all types (Norm, zero, Denorm, , NaN)
 Hint: Green sheet can be very useful!

Single Precision discussed below: (* anything, S is Sign, E is Exponent, M is Mantissa)
o Norm:

 S = *, 0 < E < 28-1, M = *
 Form: (-1)S*2(E-127) *(1+Mantissa)

o Zero:
 S = *, E = 0, M = 0

o Denorm
 Exponent (implied bias): -126
 S = *, E = 0, M>0
 Form: (-1)S*2(-126) *(0+ Mantissa)

o
 S = *, E = 28-1 (all ones), M = 0

o NaN:
 S = *, E = 28-1 (all ones), M > 0

Double Precision is analogous to above, with exception of E range and the bias (implied bias
for Denorm is -1022)

• Floating point addition:
o See http://www.ecs.umass.edu/ece/koren/arith/simulator/FPAdd/ for a good

simulation for floating point addition/subtraction. Make sure you understand what is
going on!

o Steps:
 Align exponents (biggest exponent wins!)
 Normalize the result
 Round

• Extra bits tagged on at the end of the 32bits (64bits) for rounding error

http://www.ecs.umass.edu/ece/koren/arith/simulator/FPAdd/
http://www.ecs.umass.edu/ece/koren/arith/simulator/FPAdd/

• Types: Round to zero, Round to nearest even, Round to , etc.

Somewhat-trivial Questions:
1) What is 0xffff ffff in decimal form (you can use *2y in your answer)

o Unsigned int: _________________

o Sign and magnitude: _________________

o One’s complement: _________________

o Two’s complement: _________________

2) J-Lo, who is thirty-six of age (as of fa05), whispers her age to you: “Thirty six”. Was that
big-endian or little-endian (mt fa05)

3) Let x = 0xffff ffff. What is the decimal value (if any) using Single Precision floats?

4) Let x = 0x0040 0000. What is the decimal value (if any) using Single Precision floats?

5) What is a mebi?

Conceptual/Midterm type Questions:
6) Let x = 0x4000 0000 and y = 0x0040 0000 be floats. What is x+y?

7) What is minimum positive float x such that x + 1 = x (You’ve done this before in lab, and
this has been on the Midterm before!)

8) True/False: Float arithmetic is associative. i.e. (x+y)+z = x+(y+z) . If not, show a
counterexample.

9) Let float x=220, find float y such that x+y have 0xb11 in the rounding bits on the alignment
step (assume there are 2 such bits)
i.e. x = 1.********** ********** *** | 00 * 2n

 y = *.********** ********** *** | 00 * 2n

x + y = *.********** ********** *** | 11 * 2n

 Compute x+y, using truncation.

 Compute x+y using “Round to zero”

 Compute x+y using “round to Plus Infinity”

From Dan’s previous Midterm (fa05)
(Perhaps b should be done before a )

b) What is min, max, and positive min (greater than 0) for each of the types specified above?
Type: Min max positive (normalized) min (>0)
Unsigned int
Sign-Magnitude
2s complement
Float

c) What is the largest integer that a float/double can store?

d) What is the largest integer that float/double can’t store?

