
CS61C Midterm Review
on C & Memory Management

Fall 2006
Aaron Staley

Some material taken from slides by:
Michael Le

Navtej Sadhal

Overview

• C
– Array and Pointer Goodness!

• Memory Management
 The Three Three’s!

Pointers in C

• Pointers
– A pointer contains an address of a piece of

data.
– & gets the address of a variable
– * dereferences a pointer

 int a; /*Declare a*/

 int *b = &a; /*get address of A*/

 int c = *b; /*dereference B – get C*/

Pointer Math

• Consider
 int * a = malloc(3*sizeof(int));

 int * b = a + 2;

• This is the same as:
 int * a = malloc(3*sizeof(int));

 int * b = (int*)(((int)a) + 2*sizeof(*a));

(In other words, b will increase by 8 in this
example)

Arrays in C
• Arrays vs. Pointers
 -Interchangeable when used in a function:
 void foo (int * a); IS

 void foo (int a[]);

 -array[index] is equivalent to *(array+index)
 b[i]; IS /*remember pointer math!*/
 *(b+i);
 -Arrays also have a special declaration to allocate stack

space.
 int c[5]; /*creates 5 integers on the stack*/
 NOTE: c acts like a special “read-only pointer”

 that can’t be modified!

A Note about C Declarations
• Declarations have same syntax as use!
 -int * a[2]; /*declare this*/
 -Now doing *a[1] will return an int!
Question:
Is int * a[2] declaring an array of 2 pointers to

integers or a pointer to arrays of 2 integers?

A Note about C Declarations
• Declarations have same syntax as use!
 -int * a[2]; /*declare this*/
 -Now doing *a[1] will return an int!
Question:
Is int * a[2] declaring an array of 2 pointers to

integers or a pointer to arrays of 2 integers?

IT IS AN ARRAY OF 2 POINTERS TO INTEGERS!
This is because a[1] would return an int*!

And Structures/Unions
• Struct keyword defines new datatypes:
 struct binTree{

 int a;

 struct binTree * left;

 struct binTree * right;

 };

 So: sizeof(struct binTree) == 12

• Unions allow types to be used interchangeably. Fields all use the
same memory. Size is the largest field:

 union anything{

 char a;

 int b;

 void * c;

 };

 So: sizeof (union anything) == 4

Pointers

How would you create this situation in C
without using malloc()?

a b

C (array)

d

struct Node {
 int i;
 struct Node * next;
};

Pointers
struct Node {

 int i;

 struct Node * next;

};

int main() {

 struct Node a, b, c[5], d;

 a.next = &b;

 b.next = c;

 c[0].next = &d; /* c->next =&d; is also valid*/

 return 0;

}

Malloc
• Allocates memory on the heap
• Data not disappear after function is

removed from stack
• How do you allocate an array of 10

integers?

Malloc
• Allocates memory on the heap
• Data not disappear after function is

removed from stack
• How do you allocate an array of 10

integers?
 int *i= malloc(sizeof(int)*10);

Malloc
• Allocates memory on the heap
• Data not disappear after function is

removed from stack
• How do you allocate an array of 10

integers?
 int *i= malloc(sizeof(int)*10);

• String of length 80?

Malloc
• Allocates memory on the heap
• Data not disappear after function is

removed from stack
• How do you allocate an array of 10

integers?
 int *i= malloc(sizeof(int)*10);

• String of length 80?
 char *str= malloc(sizeof(char)*81);

 /*Remember: Strings end with ‘\0’*/

Malloc
• Allocates memory on the heap
• Data not disappear after function is

removed from stack
• How do you allocate an array of 10

integers?
 int *i= malloc(sizeof(int)*10);

• String of length 80?
 char *str= malloc(sizeof(char)*81);

• If you don’t free what you allocate, you
memory leak:

 free (str); /*Do this when done with str*/

Memory Management

Stack: local variables, grows down
(lower addresses)

Heap: malloc and free, grows up
(higher addresses)

Static: global variables, fixed size

Stack

Heap

Static

Code

~0x0000 0000

~0xFFFF FFFF

Pointers & Memory
You have a linked list which holds some

value.
You want to insert in new nodes in before all

nodes of a certain value.

struct node {
 int * i; /*pointer to some value in STATIC memory*/

 struct node * next; /*next*/
};
typedef struct node Node; /*typedef is for aliasing!*/

void insertNodes(Node **lstPtr, int oldval, /
something/) {

 …

}

Pointers & Memory
struct node {
 int * i; /*pointer to some value in STATIC

 memory*/
 struct node * next; /*next*/
};
typedef struct node Node;

/*NOTE: lstPtr is a handle here. We do this in case
the HEAD of the list is removed!*/

Which is correct?
void insertNodes(Node **lstPtr, int oldVal, int * newVal)
OR

void insertNodes(Node **lstPtr, int oldVal, int newVal)

Pointers & Memory
struct node {
 int * i; /*pointer to some value in STATIC

 memory*/
 struct node * next; /*next*/
};
typedef struct node Node;

/*NOTE: lstPtr is a handle here. We do this in case
the HEAD of the list is removed!*/

Which is correct?
void insertNodes(Node **lstPtr, int oldVal, int * newVal)
OR

void insertNodes(Node **lstPtr, int oldVal, int newVal)

In Pictures
• List looks like:

• insertNodes(&head, 1, ptr_to_1);

– Has no effect

• insertNodes(&head, 4, ptr_to_1);

– List becomes:

– A small hint: &(f.a) will return address of field a (of
structure f)

Pointers
void insertNodes(Node **lstPtr, int oldVal, int * newVal)

 if ((*lstPtr)==NULL) {
 /*Base CASE*/
 } else if (*((*lstPtr)->i) == oldVal) {
 /*Equality*/
 /*Insert before this node*/
 /*Update *lstPtr somehow?*/
 } else {
 /*Inequality.. Resume*/
 /*But be careful with lstPtr!*/
 }
}
/*Recall that f->a IS (*f).a */

Pointers
void insertNodes(Node **lstPtr, int oldVal, int * newVal)

 if ((*lstPtr)==NULL) {
 return;
 } else if (*((*lstPtr)->i) == oldVal) {
 Node * old = *lstPtr;
 *lstPtr = malloc(sizeof(Node));
 (*lstPtr)->i = newVal;
 (*lstPtr)->next = old;
 insertNodes (&(old->next),

 oldVal,newVal);
 } else {
 insertNodes(
 &((*lstPtr)->next),oldVal,newVal);
 }
}

A Reminder: Memory Management

• Stack: local variables, grows down
(lower addresses)

• Heap: malloc and free, grows up
(higher addresses)

• Static: global variables, fixed size

Stack

Heap

Static

Code

0x0000 0000

0xFFFF FFFF

Memory (Heap) Management

• When allocating and freeing memory on
the heap, we need a way to manage free
blocks of memory.

• Lecture covered three different ways to
manage free blocks of memory.

• Free List (first fit, next fit, best fit)
• Slab Allocator
• Buddy System

Free List
• Maintains blocks in a (circular) list:
struct malloc_block{

 struct malloc_block * next;

 int size;

 uint8_t data[size]; /*WARNING: This is pseudocode*/

};

size size

size

data data

data

head
Address returned to caller of malloc()

Free List Fits
• First Fit Selects first block (from head) that fits!
• Can lead to much fragmentation, but better locality (you’ll

learn why this is important)
Example: malloc (4*sizeof(char));

5 4

3

data data

data

head

Free List Fits
• First Fit Selects first block (from head) that fits!
• Can lead to much fragmentation, but better locality (you’ll

learn why this is important)
Example: malloc (4*sizeof(char));

5 4

3

data data

data

head

Free List Fits
• Next Fit selects next block (after last one picked)

that fits!
• Tends to be rather fast (small blocks everywhere!)
Example: malloc (5*sizeof(char));

5 4

6

data data

data

head
Next to
Pick

Free List Fits
• Next Fit selects next block (after last one picked)

that fits!
• Tends to be rather fast (small blocks everywhere!)

=
Example: malloc (5*sizeof(char));

5 4

6

data data

data

head

Next to
Pick

Free List Fits
• Best fit picks the smallest block >= requested size.
• Tries to limit fragmentation, but can be slow (often

searches entire list)!
Example: malloc (2*sizeof(char));

5 4

3

data data

data

head

Free List Fits
• Best fit picks the smallest block >= requested size.
• Tries to limit fragmentation, but can be slow (often

searches entire list)!
Example: malloc (2*sizeof(char));

5 4

3

data data

data

head

The Slab Allocator
• Only give out memory in powers of 2.
• Keep different memory pools for different powers

of 2.
• Manage memory pool with bitmaps
• Revert to free list for large blocks.

The Slab Allocator
• Example: malloc(24*sizeof(char));
• Old:

 New:

The Slab Allocator
• Example: malloc(24*sizeof(char));
• Old:

 New:

The Buddy System
• An adaptive Slab Allocator
• Return blocks of size n as usual.
• If not found, find block of size 2*n and split the

block (This is recursive)!
• When block of size n is freed, merge it with its

neighbor (if the neighbor is freed) into a block of
size 2n (recursive!)

The Buddy System
• Example:

malloc(7*sizeof(char)); /*force request to be 8
 bytes*/

32 bytes free 16
bytes
free

16 bytes
TAKEN

The Buddy System
• Example:

malloc(7*sizeof(char)); /*force request to be 8
 bytes*/

32 bytes free 16
bytes
free

16 bytes
TAKEN

32 bytes free 16 bytes
TAKEN

8
bytes

free

8
bytes

free

The Buddy System
• Example:

malloc(7*sizeof(char)); /*force request to be 8
 bytes*/

32 bytes free 16
bytes
free

16 bytes
TAKEN

32 bytes free 16 bytes
TAKEN

8

bytes

TAK-
EN

8
bytes

free

• Example: A

free (a);

The Buddy System

32 bytes free 16 bytes
free

8

bytes

TAK-
EN

8
bytes

free

• Example: A

free (a);

The Buddy System

32 bytes free 16 bytes
free

8

bytes

TAK-
EN

8
bytes

free

32 bytes free 16 bytes
free

8

bytes

free

8
bytes

free

• Example: free (a);

• Coalesce:

The Buddy System

32 bytes free

16 bytes
free

8

bytes

free

8
bytes

free

32 bytes free
16 bytes
free

16
bytes

free

• Example: free (a);

• Coalesce:

The Buddy System

32 bytes free
32 bytes free

32 bytes free
16 bytes
free

16
bytes

free

• Example: free (a);

• Coalesce:

The Buddy System

64 bytes free =)

32 bytes free
32 bytes free

A Word about Fragmentation

• Internal fragmentation: Wasted space
within an allocated block (i.e. I request 30
bytes but get a 32 byte block back)

• External Fragmentation: Wasted space
between allocated blocks (if blocks were
compacted, we could have more
contiguous memory)

An Old Midterm Question

Buddy
System

Causes
internal
only

Causes
external
only

Causes
both types

Slab
Allocator

Causes
internal
only

Causes
external
only

Causes
both types

K&R (Free
List Only)

Causes
internal
only

Causes
external
only

Causes
both types

For each of the allocation systems on the left, circle the column that describes its
fragmentation:

An Old Midterm Question

Buddy
System

Causes
internal
only

Causes
external
only

Causes
both types

Slab
Allocator

Causes
internal
only

Causes
external
only

Causes
both types

K&R (Free
List Only)

Causes
internal
only

Causes
external
only

Causes
both types

For each of the allocation systems on the left, circle the column that describes its
fragmentation:

Garbage Collection
• Garbage collection is used for automatically

cleaning up the heap. We can’t do this in C,
because of pointer casting, pointer math, etc.

• Lecture covered three different ways to garbage
collect:

• Reference Count
• Mark and Sweep
• Stop and Copy

Reference Count

1

1

2

1

1

1

Root Set

Reference Count

1

0

3

1

1

1

Root Set

Reference Count

1

0

3

1

1

1

Lots of overhead – every time a pointer changes,
the count changes. Unused cycles are never retrieved!

Root Set

Mark and Sweep

1

0

3

1

1

1
0

0

0
Root Set

Mark and Sweep

x

0

3

1

1

1
0

0

0
Root Set

Mark and Sweep

x

0

3

1

1

1
0

0

0
Root Set

Mark and Sweep

x

0

3

1

1

1
0

0

0
Root Set

Mark and Sweep

x

0

3

1

1

1
0

0

0

Requires us to stop every so often and mark all
reachable objects (mark), then free all unmarked
blocks (sweep). Once mark and sweep is done, unmark everything!

Root Set

Stop and Copy

Stop and Copy

Requires us to also stop every so often. But
for stop and copy, we move the block to an empty
portion of the heap. Pointers must be changed
to reflect the change in block location.
Forwarding pointers must be used!

Root Set

Root Set

An Old Midterm Question
• Three code gurus are using different garbage collection techniques on three

identical machines (heap memory size M). Fill in the table. All answers
should be a function of M, e.g., “M/7” or “5M”. (data = data in heap)

What
is the…

most space their
data could take
before GC

least space their
data could take
after GC?

Most space their
data could take
after GC

Most wasted
space that GC
can’t recover?

Reference
Counting

Mark and
Sweep

Copying

An Old Midterm Question
• Three code gurus are using different garbage collection techniques on three

identical machines (heap memory size M). Fill in the table. All answers
should be a function of M, e.g., “M/7” or “5M”. (data = data in heap)

What
is the…

most space their
data could take
before GC

least space their
data could take
after GC?

Most space their
data could take
after GC

Most wasted
space that GC
can’t recover?

Reference
Counting

M (-constant) 0 M (-constant) M (-constant)

Mark and
Sweep

M (-constant) 0 M (-constant) 0

Stop &
Copy

M/2 (- really
small
constant)

0 M/2 (- really
small
constant)

0

