
David Poll, David Jacobs, Michael Le

1
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

1001 0010 0000 1000

1111 1111 1111 1111

David Jacobs

2
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

“What’s with all these 1s and 0s?”

1001 0010 0000 1000

1111 1111 1111 1111

They’re a two’s complement integer!

0110 1101 1111 0111

0000 0000 0000 0001

Invert bits and add 1

0x16^3+ 0x16^2+ 0x16^1 + 1x16^0)

= -1811349505

It’s negative!

(-1)x(6x16^7+11x16^6+15x16^5+7x16^4+

3
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

“What’s with all these 1s and 0s?”
 1 00100100 00010001111111111111111

They’re a floating point number!

Sign Exponent Fraction/Significand

(-1)^1 x 1.0001000111…b x 2^(36-127)
Expressed in binary

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

= -4.323x10^(-28)

4
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

“What’s with all these 1s and 0s?”

100100 10000 01000 111111111111111

They’re a MIPS instruction!

opcode rs rt immediate

It’s an I-type!

According to your green sheet…

opcode 36 lbu $rt, imm($rs)
$16 is $s0 and $8 is $t0

lbu $s0, -1($t0)

5
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

“What’s with all these 1s and 0s?”

1001001000001000111111111111111

They’re 32 separate logical values!

The stove is on

The disk isn’t
ready to be read.

Interrupts are enabled

I showered today

6
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

If there’s one thing you learn...

N bits can represent
2^N things

7
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

C and Memory

Get an n-element array of things

array = (thing *)

malloc(n*sizeof(thing));

Don’t forget to free it later.

free(array);

8
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Problem!
typedef struct node {

int value;

struct node* next;

} ent;

stack push(stack s,int val){

}

typedef ent * stack;

int peek(stack s){

}

stack pop(stack s,int * val){

}

9
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Problem!
typedef struct node {

int value;

struct node* next;

} ent;

stack push(stack s,int val){

ent * new = (ent *)

malloc (sizeof(ent));

new->value = val;

new->next = s;

return new;

}

typedef ent * stack;

int peek(stack s){

return s->value;

}

stack pop(stack s, int * val){

ent * temp = s->next;

*val = s->value;

free(s);

return temp;

}

10
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Memory Management
 First fit
 Allocate the first available chunk big enough

 Next fit
 Allocate the first chunk after the last one allocated

 Best fit
 Allocate the smallest chunk capable of satisfying the

request

11
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Memory Management
 Free List
 Linked list of free chunks, use first/next/best fit

 Slab Allocator
 Fixed number of 2^n sized chunks, can use a bitmap

to track. Free list for larger requests.

 Buddy Allocator
 2^n chunks can merge with their “buddy” to make a

2^(n+1) chunk. Free list for larger requests.

12
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Automatic Memory Management
 Reference Counting
 Keep track of pointers to each malloc’d chunk. Free

when references = 0.

Mark and Sweep
 Recursively follow “root set” of pointers, marking

accessible chunks. Free unreachable chunks in place.

 Copying
 Split memory into two pieces. Mark reachable

chunks as above, then copy and defragment into
other half.

13
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

MIPS
Sum: addiu $sp, $sp, -8

sw $ra, 0($sp)

sw $s0, 4($sp)

add $s0, $a0, $0

addiu $a0, $a0, -1

jal Sum

add $v0, $v0, $s0

lw $s0, 4($sp)

lw $ra, 0($sp)

addiu $sp, $sp, 8

jr $ra

Prologue

Body

Epilogue

Saved registers

Argument
registers

Return
value

Return
address

14
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Problem!
typedef struct node {

int value; // offset 0

struct node* next; //offset 4

} ent;

stack push(stack s, int val){

ent * new = (ent *)

malloc (sizeof(ent));

new->value = val;

new->next = s;

return new;

}

Push:

li $a0, 8

jal malloc

jr $ra

15
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Problem!
typedef struct node {

int value; // offset 0

struct node* next; //offset 4

} ent;

stack push(stack s, int val){

ent * new = (ent *)

malloc (sizeof(ent));

new->value = val;

new->next = s;

return new;

}

Push: addiu $sp, $sp, -12

sw $ra, 0($sp)

sw $a0, 4($sp)

sw $a1, 8($sp)

li $a0, 8

jal malloc

lw $a0, 4($sp)

lw $a1, 8($sp)

sw $a0, 4($v0)

sw $a1, 0($v0)

lw $ra, 0($sp)

addiu $sp, $sp, 12

jr $ra

16
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

CALL
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader

Memory

Object(mach lang module): foo.o

lib.o

17
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Michael Le

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 18

Problem
You have been hired to build a plate spinning controller for a
robot. The robot can only handle the following orientations
of a plate:

lean left, balanced, lean right, broken

In addition, there is a wind factor:
strong left, left, right, strong right

Depending on the situation, the robot will respond by
pushing the plate left or right, spin the plate, or do
nothing.

How would you begin designing this circuit?

19
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Finite State Machine
A general approach to designing one

1. Identify the states

2. Identify the inputs

3. Identify the outputs

4. Identify the
transitions

20
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Finite State Machine
A general approach to designing one

1. Identify the states

2. Identify the inputs

3. Identify the outputs

4. Identify the
transitions

Orientation

Wind, Current State

Action, Next State

Find all

possible combos

21
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Additional Problem Information
The robot will respond as follows:

 If the wind is strong, the orientation shifts two
steps.

 This means, Left + Strong Left = Broken Plate

 Robot spins plate only when plate returns to the
balanced state due to the wind

 Once plate is broken, controller does nothing

22
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

What does the FSM look like?
Inputs

 CurrentState
 Left, Right, Balance, Broken

 Wind
 Strong Left, Left, Right,

Strong Right

Outputs

 NextState
 Left, Right, Balance, Broken

 Action
 Push left, spin, push right, do

nothing

The robot will respond as follows:

 If the wind is strong, the
orientation shifts two steps.
 This means, Left + Strong Left

is a Broken Plate

 Robot spins plate only when
plate returns to the balanced
state due to the wind

 Once plate is broken, controller
does nothing

23
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Solution to the FSM

24
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

What Next?
 Now that we have an FSM, what do we do now?

25
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Building Truth Tables
Two general methods

 Running through every combination of the inputs

 If an input/output is multiple bits, break treat each bit
as an individual input

 Follow all the transition arcs of your FSM

26
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Solution to the Truth Table

27
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Going from Truth Table to Circuit
 Canonical Sums of Products

 For each output, OR every combination that produces a
true value

 Each combination depends on AND’ed inputs

 Commonly known as the Brute-Force method

 For example, for majority circuit

CBACACBBACBAMaj ),,(

28
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Develop your Expressions
 Using your truth table, determine the expressions for

Next1, Next0, Act1, and Act0.

29
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Brute Force Result

010101010101

0101010101011

WWCCWWCCWWCC

WWCCWWCCWWCC Next





010101010101

0101010101010

WWCCWWCCWWCC

WWCCWWCCWWCC Next





0101010101011 WWCCWWCCWWCC Act 

0101010101010 WWCCWWCCWWCC Act 

30
Fall 2006 CS61C Final Review, David Poll,
David Jacobs, Michael Le

Reflecting on Brute Force
 Easy, but ugly.

 Sometimes not the optimal solution

 What can we do to get a more elegant result?

31
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Boolean Algebra: Elegant Solution
Use Boolean Algebra and simplify your expressions!

32
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Elegant Solution

010101010101

0101010101011

WWCCWWCCWWCC

WWCCWWCCWWCC Next





010101010101

0101010101010

WWCCWWCCWWCC

WWCCWWCCWWCC Next





0111010011011 WWCWCCWCC W CCNext 

0010110101010 WCCWWCWWC W CCNext 

Brute Force

Simplified

33
Fall 2006 CS61C Final Review, David Poll,
David Jacobs, Michael Le

Elegant Solution

0101010101011 WWCCWWCCWWCC Act 

0101010101010 WWCCWWCCWWCC Act 

Brute Force

Simplified

01011011 WWCC W CCAct 

10101010 WCCWWCCAct 

34
Fall 2006 CS61C Final Review, David Poll,
David Jacobs, Michael Le

Expressions to Gates
 With your expressions, conversion to gates is

mechanical using the sums of products approach

 Each term becomes an AND gate

 Collect the output of the appropriate AND gate into an
OR

35
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Next1 Circuit

36
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

The remaining circuits…
 They are quite trivial and I’m sure you didn’t want me

to draw them for you

37
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

SDS Review
Master SDS is all about mastering the Trifecta®

 It is possible to transition from any state to any
other state. However, the ease of this transition is
dependent on the complexity of the problem

38
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

39
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Tasks a CPU must do
 Fetch an instruction

 Decode the instruction

 Get values from registers and set control lines

 Execute instruction

 Meddle with Memory, if necessary

 Record result of instruction

 a.k.a. register write back

40
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Building/Extending a CPU Datapath
1. Determine what function you want to do

 I want to support adding of two registers

2. Determine what you have to work with
 I have registers, muxes, gates, and lots of wires

3. Formulate a plan of bringing data from where it is
found to where it is needed

 I need to move data from registers to an ALU

4. Execute your plan

5. Determine Control Signals

41
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Applying Those Steps
If I have the following C code:

*p = z + 4;

Converting it to MIPS would produce

addi $t0, z, 4

sw $t0, 0(p)

Let’s suppose you want to do this in 1 instruction

42
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Step 1 – Determine function

43
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Step 1 – Determine function
I want to add two values and store them into memory

44
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Step 1 – Determine function
I want to add two values and store them into memory

As a guidance, lets layout what the datapath must do

Mem[R[rs]] = R[rt] + SignExtImmed

45
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Step 2 – Determine what is available

46
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Step 2 – Determine what is available

47
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Step 3 – Formulate Plan

48
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Step 3 – Formulate Plan
1. Add R[rt] to SignExtImmed

2. Send R[rt]+SignExtImmed to Memory Data

3. Send R[rs] to Memory Addr

49
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Step 4 – Execute Plan

Adder

0 1

MemDataSrc

Data In

1

0

MemAddrSrc
50

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Step 5 – Set Control Lines
Control Value Control Value

nPC_sel normal ExtOp Sign

RegDst X MemWr 1

RegWrite 0 MemToReg X

ALUCtrl X MemDataSrc 1

ALUSrc X MemAddrSrc 1

51
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Things to Keep in Mind
 There is more than one way to modify datapath to

produce same result

 If you split a line leading into an input, you need to use
a mux.

 Send original line into 0

 Send new line into 1

52
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

53
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Pipelining Problems
 Hazards

 Structural: Using some type of circuit two different ways,
at the same time

 Data: Instruction depends on result of prior instruction

 Control: Later instruction fetches delayed to wait for
result of branch

54
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Solving Hazards
 Structural
 add hardware, use other properties

 Control
 do things earlier such as with branches
 delay slot compromise

 Data
 use forwarding, interlocking at worst case

55
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Data Dependencies and Forwarding
 Data Dependency

 Needing data at decode when updated data has not
reached register write back

 Forwarding

 moving data from one stage to another

 Exception is R to D – not considered forwarding because no
new wire is laid down

56
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Two methods for determining
data dependencies and forwarding
1. If arrows are drawn starting from end (right

side) of R to stage where data is needed in a later
instruction, then the arrow represents data
dependency

2. If arrows are draw starting from when data is
first available (right side of stage) to where data
is absolutely needed (left side of stage), arrow
represents data dependency and forwarding
possibility

57
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

• Only draw arrow only if R of updated value of
register does not line up on top to the left of D

• Arrows should never span more than 3
instructions (red arrow bad)

addi $t0, $t0, 0 F D A M R

add $t1, $t1, $t0 F D A M R

sub $t2, $t1, $a0 F D A M R

and $t3, $t0, $a1 F D A M R

ori $t4, $t0, $t1 F D A M R

Arrow Drawing Guidelines
(for method 2)

58
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Pitfalls in arrow drawing
 Pay attention to how registers are used

 Not all instructions update registers (i.e. sw)

 Some instructions use registers two different ways
 lw/sw uses one register for address, the other for data

 Method #1 generally has arrows going left
 Arrow going to the right means no data dependency

 Method #2 generally has arrows going right;
 Arrow going to the left for #2 means forwarding won’t help;

meaning you must stall the pipeline (i.e. do interlock)

59
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Branch Delay Slot
 Any instruction that follows a branch instruction

occupies that slot

 That instruction is executed 100% of the time,
unless we have advanced pipelining logic (pipeline
flushing, out of order execution, etc).

 Unless we tell you otherwise, there is NO advanced
pipeline logic.

60
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Infamous Example
How many clock cycles would it
take to run the following code at
left, if the pipelined MIPS CPU
had all solutions to control and
data hazards as discussed in class
(branch delay slot, load interlock,
register forwarding)?

addi $1, $0, 2

loop: add $0, $0, $0

beq $1, $0, done

add $4, $3, $2

add $5, $4, $3

add $6, $5, $4

addi $1, $1, -1

beq $0, $0, loop

addi $1, $1, -1

done: beq $0, $0, exit

addi $1, $0, 3

exit: addi $1, $0, 1

61
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Infamous Example
addi $1, $0, 2

loop: add $0, $0, $0

beq $1, $0, done

add $4, $3, $2

add $5, $4, $3

add $6, $5, $4

addi $1, $1, -1

beq $0, $0, loop

addi $1, $1, -1

done: beq $0, $0, exit

addi $1, $0, 3

exit: addi $1, $0, 1

1

2, 10

3, 11

4, 12

5

6

7

8

9

13

14

15, 16, 17, 18, 19

62
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Infamous Example
addi $1, $0, 2

loop: add $0, $0, $0

beq $1, $0, done

add $4, $3, $2

add $5, $4, $3

add $6, $5, $4

addi $1, $1, -1

beq $0, $0, loop

addi $1, $1, -1

done: beq $0, $0, exit

addi $1, $0, 3

exit: addi $1, $0, 1

1

2, 10

3, 11

4, 12

5

6

7

8

9

13

14

15, 16, 17, 18, 19

19 Cycles

Pipeline Drain

63
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

More Pipelining Practice
 How many cycles are

needed to execute the
following code:

loop:

[1] add $a0, $a0, $t1

[2] lw $a1, 0($a0)

[3] add $a1, $a1, $t1

[4] sw $a1, 0($t1)

[5] add $t1, $t1, -1

[6] bne $0, $0, end

[7] add $t9, $t9, 1

• CPU has
– no forwarding units

– will interlock on any hazard

– no delayed branch

– 2nd stage branch compare

– instructions are not fetched until compare happens

– memory CAN be read/written on the same cycle

– same registers CAN be read/written on the same cycle

64
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

More Pipelining Practice
1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

[1] F D A M R

[2] F D D D A M R

[3] F D A M R

[4] F D A M R

[5] F D A M R

[6] F D A M R

[7] F D A M R

18 Cycles
65

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

More Pipelining Practice
 How many cycles are

needed to execute the
following code:

loop:

[1] add $a0, $a0, $t1

[2] lw $a1, 0($a0)

[3] add $a1, $a1, $t1

[4] sw $a1, 0($t1)

[5] add $t1, $t1, -1

[6] bne $0, $0, end

[7] add $t9, $t9, 1

• CPU has
– all forwarding units

– will interlock on any hazard

– delayed branch

– 2nd stage branch compare

memory CAN be read/written on the same cycle

– same registers CAN be read/written on the same cycle

66
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

More Pipelining Practice
1 1 1

1 2 3 4 5 6 7 8 9 0 1 2

[1] F D A M R

[2] F D A M R

[3] F D A M R

[4] F D A M R

[5] F D A M R

[6] F D A M R

[7] F D A M R

12 Cycles
67

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

David Poll

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 68

Caches
 Why?

 TIO

 Write-back

 Write-through

 Replacement

 Hit/Miss

69
Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le

Image from
HowStuffWorks.com

Example
VM Cache

 1 MiB Virtual Memory Space,
32 KiB Physical Memory
4 KiB Page Size

 0x0000C
0x200D0
0x10000
0x202D0
0x200D8
0x204D0

 32 KiB Addressable Memory,
1 KiB Cache Size,
128 B Block Size,
LRU Replacement,
2-way set associative

 0x000C
0x10D0
0x2000
0x12D0
0x10D8
0x14D0

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 70

VM
 Why?

 VPN vs. PPN

 Page Fault

 Page in, Page out

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 71

Image from
HowStuffWorks.com

VM/Caches
 What happens when we switch processes?

 Problem with Page Tables? (where are they?)

 AMAT

 AMAT = Hit Time + (Miss %) x (AMAT for Miss)

 Give an expression for AMAT of a system with VM (with
TLB) and Cache

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 72

Performance
 CPU Time (CPI)

 Example:
 Memory Read – 10%, CPI = 18

 Memory Write – 15%, CPI = 20

 ALU – 30%, CPI = 1

 Branch – 45%, CPI = 2

 Overall CPI?

 CPU Speed = 1 GHz, 1 Million instructions, CPU Time?

 Cache added. Memory Read/Write halved. Improvement?

 Megahertz Myth
 What determines performance?

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 73

I/O
 Polling

 Are we there yet?

 Interrupts

 Wake me when we get there.

 Memory Mapped I/O

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 74

Networks
 Sharing vs. Switching

 Half-duplex vs. Full-duplex

 Packets

 Header

 Payload

 Trailer

 Ack?

 TCP/IP

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 75

Disks
 Latency:

 Seek Time + Rotation Time + Transfer Time + Controller
Overhead

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 76

RAID
 RAID-0

 Striped

 RAID-1

 Mirrored

 RAID-4

 Striped, parity drive

 RAID-5

 Striped, striped parity

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 77

Parallelization
 Why?

 Distributed Computing

 Parallel Processing

 Amdahl’s law

 Time >= s + 1/p

 Speedup <= 1/s

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 78

Questions on the Sp-04 Final?

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 79

