
CS61C L26 RAID & Performance (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #26
 RAID & Performance

2005-12-05
There is one handout
today at the front and

back of the room!

Samsung pleads guilty! !
They were convicted of

“price-fixing” DRAM from 1999-04 to
2002-06 through emails, etc &

ordered to pay $0.3 Billion (2nd largest
fine in criminal antitrust case).

CPS
today!

www.cnn.com/2005/TECH/biztech/12/01/samsung.price.fixing.ap
CS61C L26 RAID & Performance (4) Garcia, Fall 2005 © UCB

1 inch disk drive!

• 2005 Hitachi Microdrive:

• 40 x 30 x 5 mm, 13g

• 8 GB, 3600 RPM, 1 disk,
10 MB/s, 12 ms seek

• 400G operational shock,
2000G non-operational

• Can detect a fall in 4” and
retract heads to safety

• For iPods, cameras, phones

• 2006 MicroDrive?

• 16 GB, 12 MB/s!

• Assuming past
trends continue

www.hitachigst.com

CS61C L26 RAID & Performance (5) Garcia, Fall 2005 © UCB

Where does Flash memory come in?

•Microdrives and Flash memory (e.g.,
CompactFlash) are going head-to-head

• Both non-volatile (no power, data ok)

• Flash benefits: durable & lower power
(no moving parts)

• Flash limitations: finite number of write cycles
(wear on the insulating oxide layer around the
charge storage mechanism)

- OEMs work around by spreading writes out

• How does Flash memory work?

• NMOS transistor with an additional conductor
between gate and source/drain which “traps”
electrons. The presence/absence is a 1 or 0.

• wikipedia.org/wiki/Flash_memory
CS61C L26 RAID & Performance (6) Garcia, Fall 2005 © UCB

What does Apple put in its iPods?

Hitachi 1 inch 4,6GB
MicroDrive

Thanks to Andy Dahl for the tip

Samsung 2,4GB
flash

shuffle nano mini iPod

Toshiba 1.8-inch 30,60GB
(MK1504GAL)

Toshiba 0.5,1GB
flash

CS61C L26 RAID & Performance (7) Garcia, Fall 2005 © UCB

Use Arrays of Small Disks…

14”
10”5.25”3.5”

3.5”

Disk Array:
1 disk design

Conventional:
4 disk
designs

Low End High End

• Katz and Patterson asked in 1987:
• Can smaller disks be used to close gap in
performance between disks and CPUs?

CS61C L26 RAID & Performance (8) Garcia, Fall 2005 © UCB

Replace Small Number of Large Disks with
Large Number of Small Disks! (1988 Disks)

Capacity

Volume

Power

Data Rate

I/O Rate

MTTF

Cost

IBM 3390K

20 GBytes

97 cu. ft.

3 KW

15 MB/s

600 I/Os/s

250 KHrs

$250K

IBM 3.5" 0061

320 MBytes

0.1 cu. ft.

11 W

1.5 MB/s

55 I/Os/s

50 KHrs

$2K

x70

23 GBytes

11 cu. ft.

1 KW

120 MB/s

3900 IOs/s

??? Hrs

$150K

Disk Arrays potentially high performance, high
MB per cu. ft., high MB per KW,

but what about reliability?

9X

3X

8X

6X

CS61C L26 RAID & Performance (9) Garcia, Fall 2005 © UCB

Array Reliability

•Reliability - whether or not a component
has failed

•measured as Mean Time To Failure (MTTF)

•Reliability of N disks
= Reliability of 1 Disk ÷ N
(assuming failures independent)

• 50,000 Hours ÷ 70 disks = 700 hour

•Disk system MTTF:
Drops from 6 years to 1 month!

•Disk arrays too unreliable to be useful!

CS61C L26 RAID & Performance (10) Garcia, Fall 2005 © UCB

Review

•Magnetic disks continue rapid advance: 2x/yr
capacity, 2x/2-yr bandwidth, slow on seek,
rotation improvements, MB/$ 2x/yr!

• Designs to fit high volume form factor

• RAID
• Motivation: In the 1980s, there were 2 classes of

drives: expensive, big for enterprises and small for
PCs. They thought “make one big out of many small!”
• Higher performance with more disk arms per $
• Adds option for small # of extra disks (the “R”)
• Started @ Cal by CS Profs Katz & Patterson

CS61C L26 RAID & Performance (11) Garcia, Fall 2005 © UCB

Redundant Arrays of (Inexpensive) Disks

•Files are “striped” across multiple disks

•Redundancy yields high data availability

•Availability: service still provided to user,

even if some components failed

•Disks will still fail

•Contents reconstructed from data
redundantly stored in the array

! Capacity penalty to store redundant info

! Bandwidth penalty to update redundant info

CS61C L26 RAID & Performance (12) Garcia, Fall 2005 © UCB

Berkeley History, RAID-I

•RAID-I (1989)

•Consisted of a Sun
4/280 workstation with
128 MB of DRAM, four
dual-string SCSI
controllers, 28 5.25-
inch SCSI disks and
specialized disk
striping software

•Today RAID is > $32
billion dollar industry,
80% nonPC disks
sold in RAIDs

CS61C L26 RAID & Performance (13) Garcia, Fall 2005 © UCB

“RAID 0”: No redundancy = “AID”

•Assume have 4 disks of data for this
example, organized in blocks

•Large accesses faster since transfer
from several disks at once

This and next 5 slides from RAID.edu, http://www.acnc.com/04_01_00.html

CS61C L26 RAID & Performance (14) Garcia, Fall 2005 © UCB

RAID 1: Mirror data

• !Each disk is fully duplicated onto its “mirror”

•Very high availability can be achieved

• Bandwidth reduced on write:

• 1 Logical write = 2 physical writes

•Most expensive solution: 100% capacity
overhead

CS61C L26 RAID & Performance (15) Garcia, Fall 2005 © UCB

• Parity computed across group to protect against hard
disk failures, stored in P disk

• Logically, a single high capacity, high transfer rate
disk

• 25% capacity cost for parity in this example vs. 100%
for RAID 1 (5 disks vs. 8 disks)

RAID 3: Parity (RAID 2 has bit-level striping)

CS61C L26 RAID & Performance (16) Garcia, Fall 2005 © UCB

RAID 4: parity plus small sized accesses

• RAID 3 relies on parity disk to discover errors on Read

• But every sector has an error detection field

• Rely on error detection field to catch errors on read, not on
the parity disk

• Allows small independent reads to different disks
simultaneously

CS61C L26 RAID & Performance (17) Garcia, Fall 2005 © UCB

Inspiration for RAID 5
•Small writes (write to one disk):

•Option 1: read other data disks, create new
sum and write to Parity Disk (access all disks)

•Option 2: since P has old sum, compare old
data to new data, add the difference to P:
1 logical write = 2 physical reads + 2 physical
writes to 2 disks

•Parity Disk is bottleneck for Small writes:
Write to A0, B1 => both write to P disk

A0 B0 C0 D0 P

A1 B1 C1 PD1

CS61C L26 RAID & Performance (18) Garcia, Fall 2005 © UCB

RAID 5: Rotated Parity, faster small writes

• Independent writes possible because of interleaved parity

• Example: write to A0, B1 uses
disks 0, 1, 4, 5, so can proceed in parallel

• Still 1 small write = 4 physical disk accesses

CS61C L26 RAID & Performance (19) Garcia, Fall 2005 © UCB

RAID products: Software, Chips, Systems

RAID was $32 B
industry in 2002,
80% nonPC
disks sold in
RAIDs

CS61C L26 RAID & Performance (20) Garcia, Fall 2005 © UCB

Margin of Safety in CS&E?

•Patterson reflects…

•Operator removing good disk vs. bad disk

•Temperature, vibration causing failure
before repair

• In retrospect, suggested RAID 5 for what
we anticipated, but should have suggested
RAID 6 (double failure OK) for
unanticipated/safety margin…

CS61C L26 RAID & Performance (21) Garcia, Fall 2005 © UCB

Peer Instruction

1. RAID 1 (mirror) and 5 (rotated parity)
help with performance and availability

2. RAID 1 has higher cost than RAID 5

3. Small writes on RAID 5 are slower
than on RAID 1

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L26 RAID & Performance (23) Garcia, Fall 2005 © UCB

Administrivia

•Please attend Wednesday"s lecture!

•HKN Evaluations at the end

•Compete in the Performance contest!

•Deadline is Mon, 2005-12-12 @ 11:59pm,
1 week from now

•Sp04 Final exam + solutions online!

•Final Review: 2005-12-11 @ 2pm in 10 Evans

•Final: 2005-12-17 @ 12:30pm in 2050 VLSB
•Only bring pen{,cil}s, two 8.5”x11” handwritten

sheets + green. Leave backpacks, books,
calculators, cells & pagers home!

CS61C L26 RAID & Performance (24) Garcia, Fall 2005 © UCB

Upcoming Calendar

LAST
CLASS

Summary,
Review, &
HKN Evals

Wed

FINAL
EXAM
SAT

12-17 @
12:30pm-
3:30pm

2050 VLSB

Performance
awards

Performance
competition
due tonight
@ midnight

#16

Sun 2pm
Review

10 Evans

I/O
Networking

& 61C
Feedback

Survey

Performance

#15

Last Week
o" Classes

SatThu LabMonWeek #

CS61C L26 RAID & Performance (25) Garcia, Fall 2005 © UCB

Performance
•Purchasing Perspective: given a
collection of machines (or upgrade
options), which has the

- best performance ?
- least cost ?
- best performance / cost ?

•Computer Designer Perspective: faced
with design options, which has the

- best performance improvement ?
- least cost ?
- best performance / cost ?

•All require basis for comparison and
metric for evaluation

•Solid metrics lead to solid progress!

CS61C L26 RAID & Performance (26) Garcia, Fall 2005 © UCB

Two Notions of “Performance”

Plane

Boeing
747

BAD/Sud
Concorde

Top
Speed

DC to
Paris

Passen-
gers

Throughput
(pmph)

610
mph

6.5
hours

470 286,700

1350
mph

3
hours

132 178,200

•Which has higher performance?
•Time to deliver 1 passenger?
•Time to deliver 400 passengers?

•In a computer, time for 1 job called
Response Time or Execution Time

•In a computer, jobs per day called
Throughput or Bandwidth

CS61C L26 RAID & Performance (27) Garcia, Fall 2005 © UCB

Definitions

•Performance is in units of things per sec

•bigger is better

• If we are primarily concerned with
response time

•performance(x) = 1
execution_time(x)

" F(ast) is n times faster than S(low) " means…

 performance(F) execution_time(S)

n = =

 performance(S) execution_time(F)

CS61C L26 RAID & Performance (28) Garcia, Fall 2005 © UCB

Example of Response Time v. Throughput

• Time of Concorde vs. Boeing 747?

• Concord is 6.5 hours / 3 hours
= 2.2 times faster

• Throughput of Boeing vs. Concorde?

• Boeing 747: 286,700 pmph / 178,200 pmph
= 1.6 times faster

• Boeing is 1.6 times (“60%”) faster in
terms of throughput

• Concord is 2.2 times (“120%”) faster in
terms of flying time (response time)

We will focus primarily on execution
time for a single job

CS61C L26 RAID & Performance (29) Garcia, Fall 2005 © UCB

Confusing Wording on Performance

•Will (try to) stick to “n times faster”;
its less confusing than “m % faster”

•As faster means both increased
performance and decreased execution
time, to reduce confusion we will (and
you should) use
“improve performance” or
“improve execution time”

CS61C L26 RAID & Performance (30) Garcia, Fall 2005 © UCB

What is Time?

•Straightforward definition of time:

•Total time to complete a task, including disk
accesses, memory accesses, I/O activities,
operating system overhead, ...

• “real time”, “response time” or
“elapsed time”

•Alternative: just time processor (CPU)
is working only on your program (since
multiple processes running at same time)

• “CPU execution time” or “CPU time”

•Often divided into system CPU time (in OS)
and user CPU time (in user program)

CS61C L26 RAID & Performance (31) Garcia, Fall 2005 © UCB

How to Measure Time?

•User Time ! seconds

•CPU Time: Computers constructed
using a clock that runs at a constant
rate and determines when events take
place in the hardware

•These discrete time intervals called
clock cycles (or informally clocks or
cycles)

•Length of clock period: clock cycle time
(e.g., 2 nanoseconds or 2 ns) and clock
rate (e.g., 500 megahertz, or 500 MHz),
which is the inverse of the clock period;
use these!

CS61C L26 RAID & Performance (32) Garcia, Fall 2005 © UCB

Measuring Time using Clock Cycles (1/2)

•or

= Clock Cycles for a program
Clock Rate

•CPU execution time for a program

 = Clock Cycles for a program
 x Clock Cycle Time

CS61C L26 RAID & Performance (33) Garcia, Fall 2005 © UCB

Measuring Time using Clock Cycles (2/2)

•One way to define clock cycles:

Clock Cycles for program

 = Instructions for a program
(called “Instruction Count”)

 x Average Clock cycles Per Instruction
 (abbreviated “CPI”)

•CPI one way to compare two machines
with same instruction set, since
Instruction Count would be the same

CS61C L26 RAID & Performance (34) Garcia, Fall 2005 © UCB

Performance Calculation (1/2)

•CPU execution time for program
= Clock Cycles for program

 x Clock Cycle Time

•Substituting for clock cycles:

CPU execution time for program
= (Instruction Count x CPI)

 x Clock Cycle Time

= Instruction Count x CPI x Clock Cycle Time

CS61C L26 RAID & Performance (35) Garcia, Fall 2005 © UCB

Performance Calculation (2/2)

CPU time = Instructions x Cycles x Seconds

Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds

Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds

Program Instruction Cycle
CPU time = Seconds

Program

• Product of all 3 terms: if missing a term, can"t
predict time, the real measure of performance

CS61C L26 RAID & Performance (36) Garcia, Fall 2005 © UCB

How Calculate the 3 Components?

•Clock Cycle Time: in specification of
computer (Clock Rate in advertisements)

• Instruction Count:

•Count instructions in loop of small program

•Use simulator to count instructions

•Hardware counter in spec. register

- (Pentium II,III,4)

•CPI:

•Calculate: Execution Time / Clock cycle time
Instruction Count

•Hardware counter in special register (PII,III,4)
CS61C L26 RAID & Performance (37) Garcia, Fall 2005 © UCB

Calculating CPI Another Way

•First calculate CPI for each individual
instruction (add, sub, and, etc.)

•Next calculate frequency of each
individual instruction

•Finally multiply these two for each
instruction and add them up to get
final CPI (the weighted sum)

CS61C L26 RAID & Performance (38) Garcia, Fall 2005 © UCB

Example (RISC processor)

Op Freqi CPIi Prod (% Time)

ALU 50% 1 .5 (23%)

Load 20% 5 1.0 (45%)

Store 10% 3 .3 (14%)

Branch 20% 2 .4 (18%)

 2.2

• What if Branch instructions twice as fast?

Instruction Mix (Where time spent)

CS61C L26 RAID & Performance (39) Garcia, Fall 2005 © UCB

“And in conclusion…”

• RAID

• Motivation: In the 1980s, there were 2 classes of drives: expensive, big for
enterprises and small for PCs. They thought “make one big out of many
small!”

• Higher performance with more disk arms/$, adds option for small # of extra
disks (the R)

• Started @ Cal by CS Profs Katz & Patterson

• Latency v. Throughput

• Performance doesn"t depend on any single factor: need Instruction
Count, Clocks Per Instruction (CPI) and Clock Rate to get valid
estimations

• User Time: time user waits for program to execute: depends heavily
on how OS switches between tasks

• CPU Time: time spent executing a single program: depends solely on
processor design (datapath, pipelining effectiveness, caches, etc.)

CPU time = Instructions x Cycles x Seconds

Program Instruction Cycle

