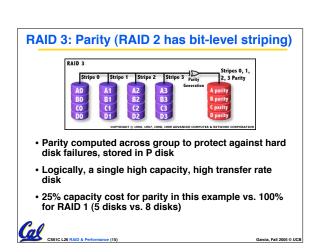
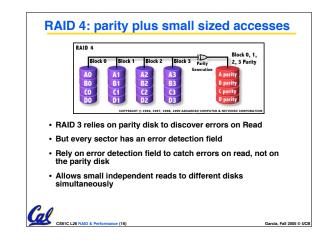
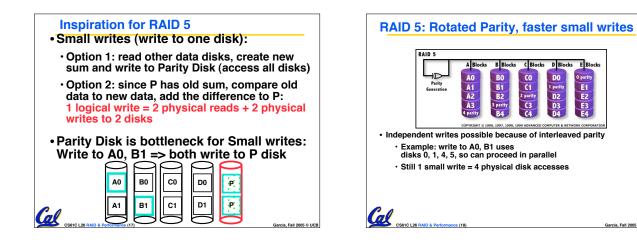

Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)								
	IBM 3390K	x70						
Capacity	20 GBytes	320 MBytes	23 GBytes					
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft. <mark>9X</mark>					
Power	3 KW	11 W	1 KW 3X					
Data Rate	15 MB/s	1.5 MB/s	120 MB/s ^{8X}					
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s <mark>6X</mark>					
MTTF	250 KHrs	50 KHrs	??? Hrs					
Cost	\$250K	\$2K	\$150K					
Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?								

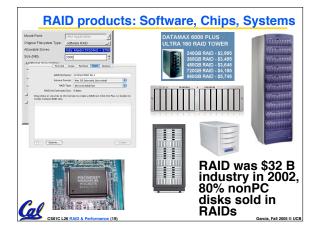


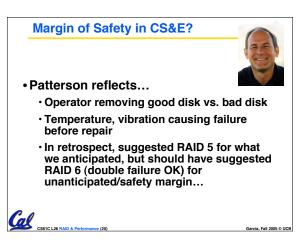


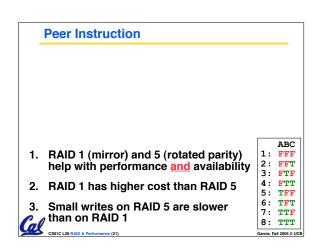
C Blocks

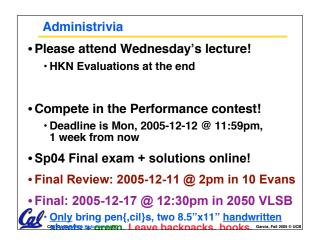
DO

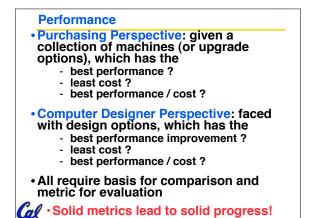

00

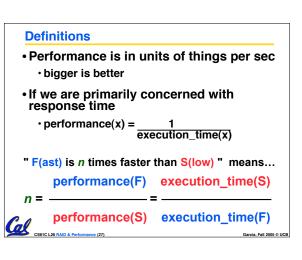

C1


E Block


Garcia, Fall 2005 @ UCB

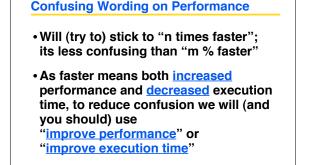

E1



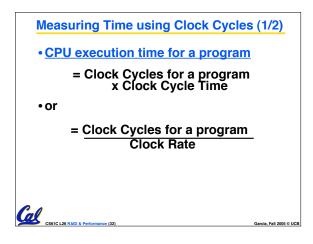


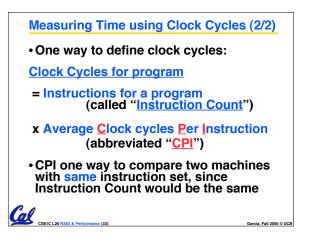
Week #	Mon	Wed	Thu Lab	Sat
#15 Last Week o' Classes	Performance	LAST CLASS Summary, Review, & HKN Evals	I/O Networking & 61C Feedback Survey	
#16 Sun 2pm Review 10 Evans	Performance competition due tonight @ midnight			FINAL EXAM SAT 12:30pm- 3:30pm 2050 VLSB Performance awards

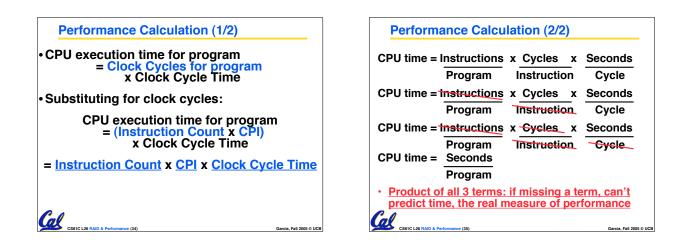
	Two Notions of "Performance"								
	Plane	DC to Paris	Top Speed	Passen- gers	Throughput (pmph)				
	Boeing 747	6.5 hours	610 mph	470	286,700				
	BAD/Sud Concorde	3 hours	1350 mph	132	178,200				
•Which has higher performance? •Time to deliver 1 passenger? •Time to deliver 400 passengers? •In a computer, time for 1 job called <u>Response Time</u> or <u>Execution Time</u> •In a computer, jobs per day called <u>Throughput</u> or <u>Bandwidth</u>									
CS61C L28 RAID & Performance (26) Garcia, Fall 2005 © U									

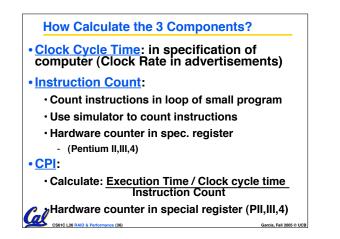


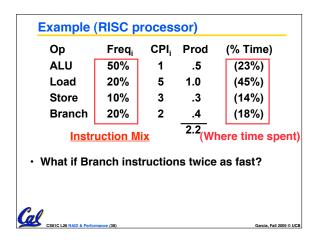
Example of Response Time v. Throughput


- Time of Concorde vs. Boeing 747?
 Concord is 6.5 hours / 3 hours
 - = <u>2.2 times faster</u>
- Throughput of Boeing vs. Concorde?
 Boeing 747: 286,700 pmph / 178,200 pmph = <u>1.6 times faster</u>
- Boeing is 1.6 times ("60%") faster in terms of throughput
- Concord is 2.2 times ("120%") faster in terms of flying time (response time)


We will focus primarily on execution




How to Measure Time? What is Time? Straightforward definition of time: • User Time \Rightarrow seconds Total time to complete a task, including disk • CPU Time: Computers constructed accesses, memory accesses, I/O activities, using a clock that runs at a constant operating system overhead, ... rate and determines when events take • "real time", "response time" or place in the hardware "elapsed time" These discrete time intervals called clock cycles (or informally clocks or Alternative: just time processor (CPU) is working only on your program (since multiple processes running at same time) cvcles) • Length of <u>clock period</u>: <u>clock cycle time</u> (e.g., 2 nanoseconds or 2 ns) and <u>clock</u> "CPU execution time" or "CPU time" rate (e.g., 500 megahertz, or 500 MHz), Often divided into system CPU time (in OS) which is the inverse of the clock period; and user CPU time (in user program) use these! Cal


Cal

