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Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #25
 Input / Output, Networks II, Disks

2005-11-30
There is one handout
today at the front and

back of the room!

Maxell!s 300GB HVDs! !
We all fondly remember

the days of Zip and Syquest drives.
InPhase Technologies has developed

300GB Holographic Versatile discs,
w/1.6TB discs to come later!

CPS
today!

www.theregister.com/2005/11/24/maxell_holo_storage/
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Review
• I/O gives computers their 5 senses

• I/O speed range is 12.5-million to one

• Processor speed means must synchronize with I/O
devices before use

• Polling works, but expensive
• processor repeatedly queries devices

• Interrupts works, more complex
• devices cause exception, OS runs and deal with the device

• I/O control leads to Operating Systems

• Integrated circuit (“Moore!s Law”) revolutionizing
network switches as well as processors

• Switch just a specialized computer

• Trend from shared to switched networks to get faster
links and scalable bandwidth
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ABCs of Networks:  2 Computers

• Starting Point: Send bits between 2 computers

• Queue (First In First Out) on each end

• Can send both ways (“Full Duplex”)
• One-way information is called “Half Duplex”

• Information sent called a “message”
• Note: Messages also called packets

network

interface
device

OS

app

OS

app
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A Simple Example: 2 Computers

•What is Message Format?
• Similar idea to Instruction Format

• Fixed size? Number bits?

• Header(Trailer): information to deliver message

• Payload: data in message

• What can be in the data?

• anything that you can represent as bits

• values, chars, commands, addresses...

8 bit 32 x Length bits

DataLength
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Questions About Simple Example

•What if more than 2 computers want to
communicate?

• Need computer “address field” in packet to
know which computer should receive it
(destination), and to which computer it came
from for reply (source) [just like envelopes!]

8 bits 32xn  bits8 bits 8 bits

Header Payload

CMD/ Address /DataNet ID Net ID

Dest. Source Len
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ABCs: many computers

•switches and routers interpret the
header in order to deliver the packet

•source encodes and destination
decodes content of the payload

network

interface

device

OS

application

OS

application
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Questions About Simple Example

•What if message is garbled in transit?

• Add redundant information that is checked
when message arrives to be sure it is OK

• 8-bit sum of other bytes: called “Check sum”;
upon arrival compare check sum to sum of rest
of information in message. xor also popular.

Header Payload

Checksum

Trailer

CMD/ Address /DataNet ID Net ID Len

Math 55 talks about what a Check sum is…
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Questions About Simple Example

•What if message never arrives?

• Receiver tells sender when it arrives (ack) [ala
registered mail], sender retries if waits too long

• Don!t discard message until get “ACK” (for
ACKnowledgment);
Also, if check sum fails, don!t send ACK

Header Payload

Checksum

Trailer

CMD/ Address /DataNet ID Net ID Len ACK
INFO
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Observations About Simple Example

•Simple questions such as those above
lead to more complex procedures to
send/receive message and more complex
message formats

•Protocol: algorithm for properly sending
and receiving messages (packets)
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Software Protocol to Send and Receive

• SW Send steps
1: Application copies data to OS buffer

2: OS calculates checksum, starts timer

3: OS sends data to network interface HW and says
start

• SW Receive steps
3: OS copies data from network interface HW to OS

buffer

2: OS calculates checksum, if OK, send ACK; if not,
delete message (sender resends when timer expires)

1: If OK, OS copies data to user address space,  
& signals application to continue
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Protocol for Networks of Networks?

• Internetworking: allows computers on
independent and incompatible networks to
communicate reliably and efficiently;

• Enabling technologies: SW standards that allow
reliable communications without reliable networks

• Hierarchy of SW layers, giving each layer
responsibility for portion of overall
communications task, called
protocol families or protocol suites

• Abstraction to cope with complexity of
communication vs. Abstraction for complexity
of computation
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Protocol Family Concept

Message Message

TH Message TH Message TH TH

Actual Actual

Physical

Message TH Message TH

Actual Actual
Logical

Logical
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Protocol Family Concept

• Key to protocol families is that communication
occurs logically at the same level of the
protocol, called peer-to-peer…

…but is implemented via services at the next
lower level

• Encapsulation: carry higher level information
within lower level “envelope”

• Fragmentation: break packet into multiple
smaller packets and reassemble
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Protocol for Network of Networks

•Transmission Control Protocol/Internet
Protocol (TCP/IP)

• This protocol family is the basis of the
Internet, a WAN protocol

• IP makes best effort to deliver

• TCP guarantees delivery

• TCP/IP so popular it is used even when
communicating locally: even across
homogeneous LAN
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Message

TCP/IP packet, Ethernet packet, protocols

•Application sends
message

TCP data

TCP Header

IP Header

IP DataEH

Ethernet Hdr

Ethernet Hdr

•TCP breaks into 64KiB
segments, adds 20B
header
• IP adds 20B header,
sends to network

• If Ethernet, broken into
1500B packets with
headers, trailers (24B)

•All Headers, trailers have
length field, destination,
...
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Overhead vs. Bandwidth

•Networks are typically advertised using peak
bandwidth of network link: e.g., 100
Mbits/sec Ethernet (“100 base T”)

•Software overhead to put message into
network or get message out of network often
limits useful bandwidth

•Assume overhead to send and receive =
320 microseconds (µs), want to send 1000
Bytes over “100 Mbit/s” Ethernet

• Network transmission time:
1000Bx8b/B /100Mb/s
= 8000b / (100b/µs) = 80 µs

• Effective bandwidth: 8000b/(320+80)µs = 20 Mb/s
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Peer Instruction

(T / F) P2P filesharing has been the
dominant application on many links!

Suppose we have 2 networks, Which
has a higher effective bandwidth as a
function of the transferred data size?

•BearsNet
TCP/IP overhead 300 µs, peak BW 10Mb/s

•CalNet
TCP/IP overhead 500 µs, peak BW 100Mb/s

   TRUE
1: B always
2: C always
3: B small
   C big
4: B big
   C small
5: The same!

  FALSE
6: B always
7: C always
8: B small
   C big
9: B big
   C small
0: The same!
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Administrivia

•Only 2 lectures to go (after this one)! :-(

•Project 4 (Cache simulator) due friday

•Compete in the Performance contest!

• Deadline is Mon, 2005-12-12 @ 11:59pm,
~12 days from now

•HW4 and HW5 are done

•Regrade requests are due by 2005-12-05

•Project 3 will be graded face-to-face,
check web page for scheduling

•Final: 2005-12-17 @ 12:30pm in 2050 VLSB!
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Upcoming Calendar

LAST
CLASS

Summary,
Review, &
HKN Evals

I/O
Networks II

& Disks

Wed

FINAL
EXAM
SAT

12-17 @
12:30pm-
3:30pm

2050 VLSB

Performance
awards

Performance
competition
due tonight
@ midnight

#16

Sun 2pm
Review

10 Evans

I/O
Networking

& 61C
Feedback

Survey

Performance

#15

Last Week
o! Classes

 Cache
project due
yesterday

I/O
Polling

I/O
Basics &

Networks I

#14

This week

SatThu LabMonWeek #
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Magnetic Disks

•Purpose:

•  Long-term, nonvolatile, inexpensive
storage for files

•  Large, inexpensive, slow level in the
memory hierarchy

 Processor
 (active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)
(where 
programs, 
data live 
when
running)

Devices

Input

Output

Keyboard, 
Mouse

Display, 
Printer

Disk,
Network
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Photo of Disk Head, Arm, Actuator

Actuator

Arm

Head

Platters (12)

{
Spindle
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Disk Device Terminology

• Several platters, with information recorded
magnetically on both surfaces (usually)

• Actuator moves head (end of arm) over track
(“seek”), wait for sector rotate under head, then
read or write

• Bits recorded in tracks, which in turn divided into
sectors (e.g., 512 Bytes)

Platter

Outer
Track

Inner
TrackSector

Actuator

HeadArm
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Disk Device Performance

Platter

Arm

Actuator

HeadSectorInner
Track

Outer
Track

• Disk Latency = Seek Time + Rotation Time +
Transfer Time + Controller Overhead

• Seek Time? depends no. tracks move arm, seek speed
of disk

• Rotation Time? depends on speed disk rotates, how
far sector is from head

• Transfer Time? depends on data rate (bandwidth) of
disk (bit density), size of request

Controller
Spindle
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Data Rate: Inner vs. Outer Tracks 

•To keep things simple,
originally same # of sectors/track

• Since outer track longer, lower bits per inch

•Competition decided to keep bits/inch (BPI)
high for all tracks (“constant bit density”)

• More capacity per disk

• More sectors per track towards edge

• Since disk spins at constant speed,
outer tracks have faster data rate

•Bandwidth outer track 1.7X inner track!
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Disk Performance Model /Trends
•  Capacity : + 100% / year (2X / 1.0 yrs)

Over time, grown so fast that # of platters has reduced (some
even use only 1 now!)

• Transfer rate (BW) : + 40%/yr (2X / 2 yrs)

• Rotation+Seek time : – 8%/yr (1/2 in 10 yrs)

• Areal Density
• Bits recorded along a track: Bits/Inch (BPI)

• # of tracks per surface: Tracks/Inch (TPI)

• We care about bit density per unit area Bits/Inch2

• Called Areal Density = BPI x TPI

• MB/$: > 100%/year (2X / 1.0 yrs)
• Fewer chips + areal density
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Disk History (IBM)

Data 

density

Mibit/sq. in.

Capacity of

Unit Shown

Mibytes

1973:

1. 7 Mibit/sq. in

0.14 GiBytes

1979:

7. 7 Mibit/sq. in

2.3 GiBytes

source: New York Times, 2/23/98, page C3, 

“Makers of disk drives crowd even more data into even smaller spaces”
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Disk History

1989:

63 Mibit/sq. in

60 GiBytes

1997:

1450 Mibit/sq. in

2.3 GiBytes

source: New York Times, 2/23/98, page C3, 

“Makers of disk drives crowd even more data into even smaller spaces”

1997:

3090 Mibit/sq. in

8.1 GiBytes

CS61C L25 Input/Output, Networks II, Disks (29) Garcia, Fall 2005 © UCB

Historical Perspective

• Form factor and capacity
drives market, more than
performance

• 1970s: Mainframes ! 14"
diam. disks

• 1980s: Minicomputers,
Servers ! 8", 5.25" diam.
disks

• Late 1980s/Early 1990s:
• Pizzabox PCs ! 3.5 inch

diameter disks

• Laptops, notebooks ! 2.5
inch disks

• Palmtops didn!t use disks,
so 1.8 inch diameter disks
didn!t make it

The five most popular internal
form factors for PC hard disks.
Clockwise from the left: 5.25",

3.5", 2.5", PC Card and
CompactFlash.

www.pcguide.com/ref/hdd/op/form.htm
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State of the Art: Two camps (2005)

• Performance
• Enterprise apps, servers

• E.g., Seagate Cheetah 15K.4

• Serial-Attached SCSI,
Ultra320 SCSI, 2Gbit
Fibre Channel interface

• 146 GB, 3.5-inch disk
• 15,000 RPM
• 4 discs, 8 heads
• 13 watts (idle)
• 3.5 ms avg. seek
• 200 MB/s transfer rate
• 1.4 Million hrs MTBF
• 5 year warrantee
• $1000 = $6.8 / GB

source: www.seagate.com

• Capacity
• Mainstream, home uses

• E.g., Seagate Barracuda 7200.9

• Serial ATA 3Gb/s,
Ultra ATA/100

• 500 GB, 3.5-inch disk
• 7,200 RPM
• ? discs, ? heads
• 7 watts (idle)
• 8.5 ms avg. seek
• 300 MB/s transfer rate
• ? Million hrs MTBF
• 5 year warrantee
• $330 = $0.66 / GB
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1 inch disk drive!

• 2005 Hitachi Microdrive:

• 40 x 30 x 5 mm, 13g

• 8 GB, 3600 RPM, 1 disk,
10 MB/s, 12 ms seek

• 400G operational shock,
2000G non-operational

• Can detect a fall in 4” and
retract heads to safety

• For iPods, cameras, phones

• 2006 MicroDrive?

• 16 GB, 12 MB/s!

• Assuming past
trends continue

www.hitachigst.com
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Where does Flash memory come in?

•Microdrives and Flash memory (e.g.,
CompactFlash) are going head-to-head

• Both non-volatile (no power, data ok)

• Flash benefits: durable & lower power
(no moving parts)

• Flash limitations: finite number of write cycles
(wear on the insulating oxide layer around the
charge storage mechanism)

- OEMs work around by spreading writes out

• How does Flash memory work?

• NMOS transistor with an additional conductor
between gate and source/drain which “traps”
electrons. The presence/absence is a 1 or 0.

•  wikipedia.org/wiki/Flash_memory
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Use Arrays of Small Disks…

14”
10”5.25”3.5”

3.5”

Disk Array:
1 disk design

Conventional:
4 disk
designs

Low End High End

• Katz and Patterson asked in 1987:
• Can smaller disks be used  to close gap in
performance between disks and CPUs?
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Replace Small Number of Large Disks with
Large Number of Small Disks! (1988 Disks)

Capacity 

Volume 

Power

Data Rate 

I/O Rate   

MTTF  

Cost

IBM 3390K

20 GBytes

97 cu. ft.

3 KW

15 MB/s

600 I/Os/s

250 KHrs

$250K

IBM 3.5" 0061

320 MBytes

0.1 cu. ft.

11 W

1.5 MB/s

55 I/Os/s

50 KHrs

$2K

x70

23 GBytes

11 cu. ft.

1 KW

120 MB/s

3900 IOs/s

??? Hrs

$150K

Disk Arrays potentially high performance, high
MB per cu. ft., high MB per KW, 

but what about reliability?

9X

3X

8X

6X
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Array Reliability

•Reliability - whether or not a component
has failed

• measured as Mean Time To Failure (MTTF)

•Reliability of N disks
= Reliability of 1 Disk ÷ N
(assuming failures independent)

• 50,000 Hours ÷ 70 disks = 700 hour

•Disk system MTTF:
Drops from 6 years  to 1 month!

•Disk arrays too unreliable to be useful!
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Redundant Arrays of (Inexpensive) Disks

•Files are “striped” across multiple disks

•Redundancy yields high data availability

• Availability: service still provided to user,

even if some components failed

•Disks will still fail

•Contents reconstructed from data
redundantly stored in the array

! Capacity penalty to store redundant info

! Bandwidth penalty to update redundant info
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Berkeley History, RAID-I

•RAID-I (1989)

• Consisted of a Sun
4/280 workstation with
128 MB of DRAM, four
dual-string SCSI
controllers, 28 5.25-
inch SCSI disks and
specialized disk
striping software

•Today RAID is > $27
billion dollar industry,
80% nonPC disks
sold in RAIDs
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“RAID 0”: No redundancy = “AID”

•Assume have 4 disks of data for this
example, organized in blocks

•Large accesses faster since transfer
from several disks at once

This and next 5 slides from RAID.edu,  http://www.acnc.com/04_01_00.html
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RAID 1: Mirror data

• "Each disk is fully duplicated onto its “mirror”

• Very high availability can be achieved

• Bandwidth reduced on write:

• 1 Logical write = 2 physical writes

•Most expensive solution: 100% capacity
overhead
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RAID 3: Parity (RAID 2 has bit-level striping) 

• Parity computed across group to protect
against hard disk failures, stored in P disk

• Logically, a single high capacity, high transfer
rate disk

• 25% capacity cost for parity in this example vs.
100% for RAID 1 (5 disks vs. 8 disks)
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RAID 4: parity plus small sized accesses

• RAID 3 relies on parity disk to discover errors on
Read

• But every sector has an error detection field

• Rely on error detection field to catch errors on
read, not on the parity disk

• Allows small independent reads to different disks
simultaneously
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Inspiration for RAID 5
•Small writes (write to one disk):

• Option 1: read other data disks, create new
sum and write to Parity Disk (access all disks)

• Option 2: since P has old sum, compare old
data to new data, add the difference to P:
1 logical write = 2 physical reads + 2 physical
writes to 2 disks

•Parity Disk is bottleneck for Small writes:
Write to A0, B1 => both write to P disk

A0 B0 C0 D0 P

A1 B1 C1 PD1
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RAID 5: Rotated Parity, faster small writes

• Independent writes possible because of interleaved
parity

• Example: write to A0, B1 uses
disks 0, 1, 4, 5, so can proceed in parallel

• Still 1 small write = 4 physical disk accesses
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Peer Instruction

1. RAID 1 (mirror) and 5 (rotated parity)
help with performance and availability

2. RAID 1 has higher cost than RAID 5

3. Small writes on RAID 5 are slower than
on RAID 1

   ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
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“And In conclusion…”

• Protocol suites allow heterogeneous networking

• Another form of principle of abstraction

• Protocols ! operation in presence of failures

• Standardization key for LAN, WAN

•Magnetic Disks continue rapid advance: 60%/yr
capacity, 40%/yr bandwidth, slow on seek,
rotation improvements, MB/$ improving 100%/yr?

• Designs to fit high volume form factor

• RAID

• Higher performance with more disk arms per $

• Adds option for small # of extra disks

• Today RAID is > $27 billion dollar industry, 80% nonPC
disks sold in RAIDs; started at Cal


