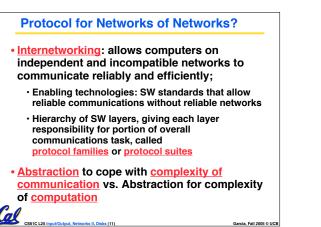
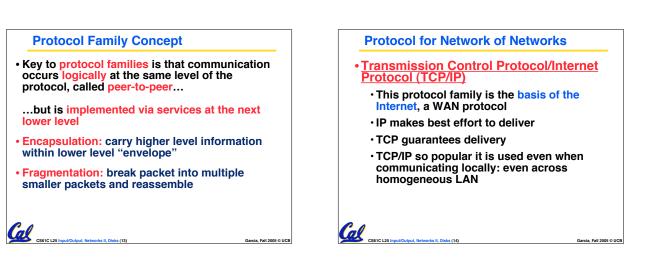
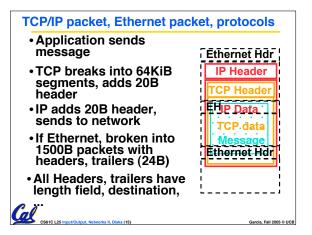

Questions Ab	out Simple Exan	nple	
What if message is	s garbled in transit	?	•
 Add redundant inf when message arr 	ormation that is christed to be sure it is		•
 8-bit sum of other upon arrival comp of information in h 	bytes: called " <u>Che</u> are check sum to s nessage. xor also	eck sum"; sum of rest popular.	•
	Ū	•••	
	Ū	Checksum	
Net ID Net ID Len		Checksum	
		Checksum	N

Questions About Simple Example

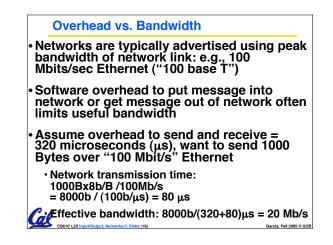

- What if message never arrives?
- Receiver tells sender when it arrives (ack) [ala registered mail], sender retries if waits too long
- Don't discard message until get "ACK" (for ACKnowledgment); Also, if check sum fails, don't send ACK

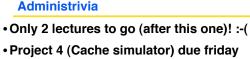
		Checksum
Net ID Net ID Len ACK	CMD/ Addres	s /Data
Header	Payload	Trailer
CS61C L25 Input/Output, Networks II, Disks (8)		Garcia, Fall 2005 @ UCB

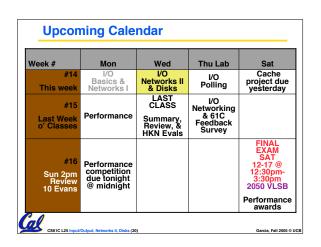


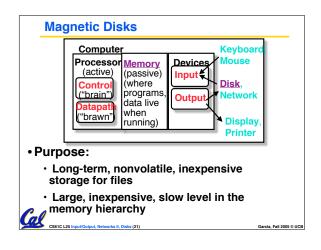


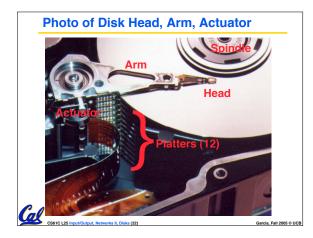
Software Protocol to Send and Receive

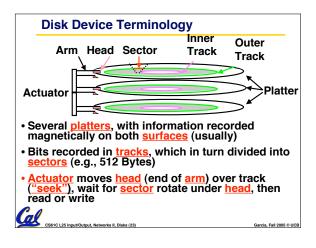


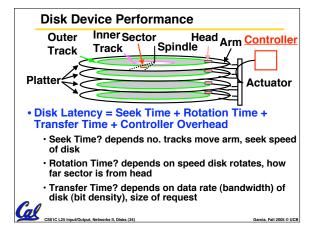


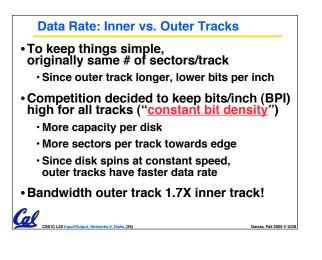


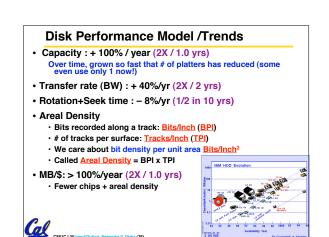

Peer Instruction		
	1.	TRUE
		B always C always
	3:	B small C big
	4:	B big
(T / F) P2P filesharing has been the dominant application on many links!	5:	C small The same!
Suppose we have 2 networks, Which	6.	FALSE B always
has a higher effective bandwidth as a function of the transferred data size?	7:	C always
•BearsNet	8:	B small C big
TCP/IP overhead 300 µs, peak BW 10Mb/s	9:	B big
•CalNet TCP/IP overhead 500 µs, peak BW 100Mb/s	0:	C small The same!

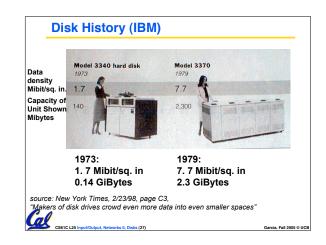


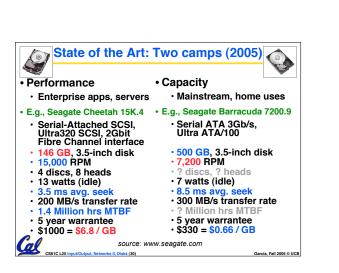


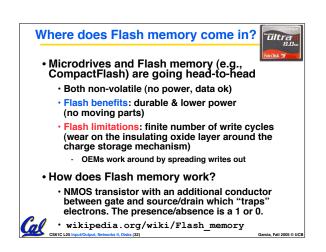

- Compete in the Performance contest! • Deadline is Mon, 2005-12-12 @ 11:59pm, ~12 days from now
- HW4 and HW5 are done
 Regrade requests are due by 2005-12-05
- Project 3 will be graded face-to-face, check web page for scheduling

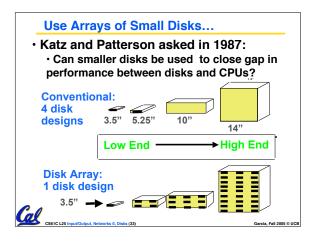




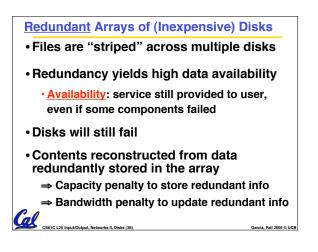


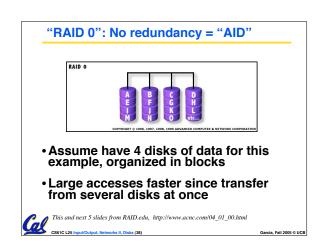


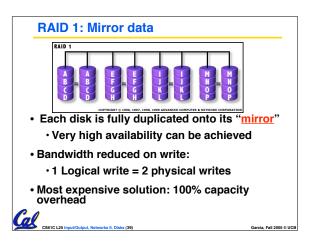


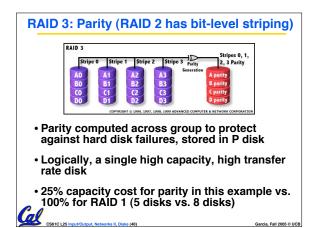


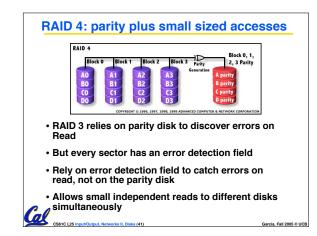
Historical Perspective Form factor and capacity drives market, more than performance 1970s: Mainframes ⇒ 14" diam. disks 1980s: Minicomputers, Servers ⇒ 8", 5.25" diam. disks Late 1980s/Early 1990s: Pizzabox PCs ⇒ 3.5 inch diameter disks The five most popular internal form factors for PC hard disks Laptops, notebooks \Rightarrow 2.5 inch disks Clockwise from the left: 5.25", 3.5", 2.5", PC Card and Palmtops didn't use disks, so 1.8 inch diameter disks didn't make it CompactFlash. www.pcquide.com/ref/hdd/op/form.htm **G**

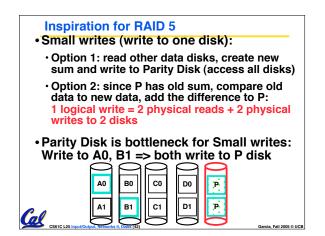

Garcia, Fall 2005 @ UCB

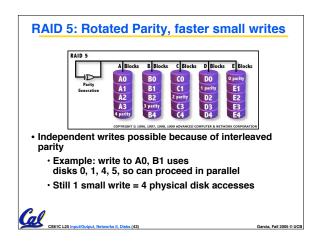

Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)					
IBM 3390K IBM 3.5" 0061 x70					
Capacity	20 GBytes	320 MBytes	23 GBytes		
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft. <mark>9X</mark>		
Power	3 KW	11 W	1 KW ^{3X}		
Data Rate	15 MB/s	1.5 MB/s	120 MB/s <mark>8X</mark>		
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s <mark>6X</mark>		
MTTF	250 KHrs	50 KHrs	??? Hrs		
Cost	\$250K	\$2K	\$150K		
Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW,					
but what about reliability? C561C L25 Input/Output, Networks II, Disks (34) Garcia, Fall 2005 © UCB					

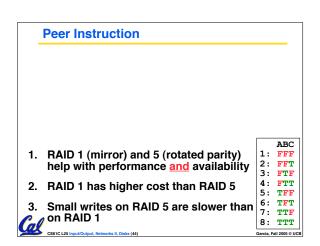



Array Reliability **Reliability** - whether or not a component has failed • measured as Mean Time To Failure (MTTF) Reliability of N disks = Reliability of 1 Disk ÷ N (assuming failures independent) • 50,000 Hours ÷ 70 disks = 700 hour • Disk system MTTF: Drops from 6 years to 1 month! Disk arrays too unreliable to be useful! Cal it/Output. Net









"And In conclusion..."

- Protocol suites allow heterogeneous networking
 - Another form of principle of abstraction
 - \cdot Protocols \Rightarrow operation in presence of failures
 - Standardization key for LAN, WAN
- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/\$ improving 100%/yr?
- Designs to fit high volume form factor
- RAID
 - Higher performance with more disk arms per \$ Adds option for small # of extra disks
- א טומאי Is > \$27 billion dollar in disks sold in RAIDs; started at Cal Today RAID is > \$27 billion dollar industry, 80% nonPC

Garcia, Fall 2005 © UCB