
CS61C L20 Introduction to Pipelined Execution, pt II (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c

CS61C : Machine Structures

Lecture #20
 Introduction to Pipelined Execution, pt II

2005-11-09
There is one handout
today at the front and

back of the room!

History!s worst SW bugs! !
How does your Proj1 Peg

Solitaire bug compares to the top 10
worst bugs of all time? How many can

you name? Wired chose the list…

wired.com/news/technology/bugs/0,2924,69355,00.html

CPS
today!

CS61C L20 Introduction to Pipelined Execution, pt II (2) Garcia, Fall 2005 © UCB

Review: Pipeline (1/2)

•Optimal Pipeline

•Each stage is executing part of an
instruction each clock cycle.

•One inst. finishes during each clock cycle.

•On average, execute far more quickly.

•What makes this work?

•Similarities between instructions allow us
to use same stages for all instructions
(generally).

•Each stage takes about the same amount
of time as all others: little wasted time.

CS61C L20 Introduction to Pipelined Execution, pt II (3) Garcia, Fall 2005 © UCB

Review: Pipeline (2/2)

•Pipelining is a BIG IDEA

•widely used concept

•What makes it less than perfect?

•Structural hazards: suppose we had
only one cache?
! Need more HW resources

•Control hazards: need to worry about
branch instructions?
 ! Delayed branch

•Data hazards: an instruction depends on
a previous instruction?

CS61C L20 Introduction to Pipelined Execution, pt II (4) Garcia, Fall 2005 © UCB

Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

•Consider the following sequence of
instructions

CS61C L20 Introduction to Pipelined Execution, pt II (5) Garcia, Fall 2005 © UCB

 Dependencies backwards in time are hazards

Data Hazards (2/2)

sub $t4,$t0,$t3

A
L

UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2

IF ID/RF EX MEM WBA
L

UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L20 Introduction to Pipelined Execution, pt II (6) Garcia, Fall 2005 © UCB

• Forward result from one stage to another

Data Hazard Solution: Forwarding

sub $t4,$t0,$t3

A
L

UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2

IF ID/RF EX MEM WBA
L

UI$ Reg D$ Reg

 “or” hazard solved by register hardware

CS61C L20 Introduction to Pipelined Execution, pt II (7) Garcia, Fall 2005 © UCB

• Dependencies backwards in time are
hazards

Data Hazard: Loads (1/4)

sub $t3,$t0,$t2
A

L
UI$ Reg D$ Reg

lw $t0,0($t1)

IF ID/RF EX MEM WBA
L

UI$ Reg D$ Reg

• Can!t solve with forwarding
• Must stall instruction dependent on
load, then forward (more hardware)

CS61C L20 Introduction to Pipelined Execution, pt II (8) Garcia, Fall 2005 © UCB

• Hardware must stall pipeline
• Called “interlock”

Data Hazard: Loads (2/4)

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Reg
bub
ble

and $t5,$t0,$t4

A
L

UI$ Reg D$ Regbub
ble

or $t7,$t0,$t6 I$

A
L

UReg D$
bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

CS61C L20 Introduction to Pipelined Execution, pt II (9) Garcia, Fall 2005 © UCB

Data Hazard: Loads (3/4)

• Instruction slot after a load is called
“load delay slot”

• If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.

• If the compiler puts an unrelated
instruction in that slot, then no stall

•Letting the hardware stall the instruction
in the delay slot is equivalent to putting
a nop in the slot (except the latter uses
more code space)

CS61C L20 Introduction to Pipelined Execution, pt II (10) Garcia, Fall 2005 © UCB

Data Hazard: Loads (4/4)

•Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
L

UReg D$

lw $t0, 0($t1)

A
L

UI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

nop

CS61C L20 Introduction to Pipelined Execution, pt II (11) Garcia, Fall 2005 © UCB

 Historical Trivia

•First MIPS design did not interlock and
stall on load-use data hazard

•Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages

•Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS

CS61C L20 Introduction to Pipelined Execution, pt II (12) Garcia, Fall 2005 © UCB

Administrivia

•Any administrivia?

•Advanced Pipelining!

• “Out-of-order” Execution

• “Superscalar” Execution

CS61C L20 Introduction to Pipelined Execution, pt II (13) Garcia, Fall 2005 © UCB

Review Pipeline Hazard: Stall is dependency

A depends on D; stall since folder tied up

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

bubble

303030 3030 30 30

CS61C L20 Introduction to Pipelined Execution, pt II (14) Garcia, Fall 2005 © UCB

Out-of-Order Laundry: Don’t Wait

A depends on D; rest continue; need
more resources to allow out-of-order

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

303030 3030 30 30

E

F

bubble

CS61C L20 Introduction to Pipelined Execution, pt II (15) Garcia, Fall 2005 © UCB

Superscalar Laundry: Parallel per stage

More resources, HW to match mix of
parallel tasks?

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time

B

C

D

A

E

F

 (light clothing)
 (dark clothing)

 (very dirty clothing)

 (light clothing)
 (dark clothing)

 (very dirty clothing)

303030 3030

CS61C L20 Introduction to Pipelined Execution, pt II (16) Garcia, Fall 2005 © UCB

Superscalar Laundry: Mismatch Mix

Task mix underutilizes extra resources

T

a

s

k

O

r

d

e

r

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

CS61C L20 Introduction to Pipelined Execution, pt II (17) Garcia, Fall 2005 © UCB

Real-world pipelining problem

•You!re the manager of a HUGE
assembly plant to build computers.

Box

Problem:
need to
run 2 hr

test before
done..help!

•Main pipeline

• 10 minutes/
pipeline stage

• 60 stages

• Latency: 10hr

CS61C L20 Introduction to Pipelined Execution, pt II (18) Garcia, Fall 2005 © UCB

Real-world pipelining problem solution 1

• You remember: “a pipeline frequency
is limited by its slowest stage”, so…

Box

Problem:
need to
run 2 hr

test before
done..help!

•Main pipeline

• 10 minutes/
pipeline stage

• 60 stages

• Latency: 10hr

2hours/

120hr

CS61C L20 Introduction to Pipelined Execution, pt II (19) Garcia, Fall 2005 © UCB

Real-world pipelining problem solution 2

•Create a sub-pipeline!

•Main pipeline

• 10 minutes/
pipeline stage

• 60 stages

Box

2hr test
(12 CPUs

in this
pipeline)

CS61C L20 Introduction to Pipelined Execution, pt II (20) Garcia, Fall 2005 © UCB

Wired Magazine: History!s Worst SW Bugs!

•Engineers learn from failure!

•Failure for most other engineers
usually means people die as a result

•Be thankful you weren!t
a civil engineer designing
steel truss bridges in the
early 1900s, since
the failure rate was > 40%!

•First “Bug”: in 1947 engineers found a
dead moth in Panel F, Relay #70 of the
Harvard Mark 1 computer system.

• The following are sorted by date.
wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (21) Garcia, Fall 2005 © UCB

July 28, 1962 – Mariner I space probe

•“A bug in the flight software for the
Mariner 1 causes the rocket to divert
from its intended path on launch.
Mission control destroys the rocket
over the Atlantic Ocean.

•The investigation into the accident
discovers that a formula written on
paper in pencil was improperly
transcribed into computer code,
causing the computer to miscalculate
the rocket's trajectory.”

wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (22) Garcia, Fall 2005 © UCB

1982 – Soviet gas pipeline

• “Operatives working for the CIA
allegedly plant a bug in a Canadian
computer system purchased to
control the trans-Siberian gas pipeline.

• Soviets had obtained the system as part of
a wide-ranging effort to covertly purchase
or steal sensitive U.S. technology.

• The CIA reportedly found out about the
program and decided to make it backfire
with equipment that would pass Soviet
inspection and then fail once in operation.

• The resulting event is reportedly the largest
non-nuclear explosion in the planet's
history…”
wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (23) Garcia, Fall 2005 © UCB

1985-1987 – Therac-25 medical accelerator

• “A radiation therapy device malfunctions and delivers
lethal radiation doses at several medical facilities. Based upon
a previous design, the Therac-25 was an "improved! therapy
system that could deliver 2 different kinds of radiation: a low-
power electron beam (beta particles) or X-rays.

• The Therac-25!s X-rays were generated by smashing high-
power electrons into a metal target positioned between the
electron gun and the patient. A second "improvement! was the
replacement of the older Therac-20!s electromechanical safety
interlocks with software control, a decision made because
software was perceived to be more reliable.

What engineers didn!t know was that both the 20 and the 25
were built upon an operating system that had been kludged
together by a programmer with no formal training. Because of
a subtle bug called a "race condition,! a quick-fingered typist
could accidentally configure the Therac-25 so the electron
beam would fire in high-power mode but with the metal X-ray
target out of position. At least five patients die; others are
seriously injured.”

wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (24) Garcia, Fall 2005 © UCB

1988 – Buffer overflow in Berkeley Unix finger daemon

• “The first internet worm (the so-called
Morris Worm) infects between 2,000 and
6,000 computers in less than a day by taking
advantage of a buffer overflow. The specific
code is a function in the standard input/output
library routine called gets() designed to get a
line of text over the network. Unfortunately,
gets() has no provision to limit its input, and
an overly large input allows the worm to take
over any machine to which it can connect.

• Programmers respond by attempting to stamp
out the gets() function in working code, but
they refuse to remove it from the C
programming language!s standard I/O library,
where it remains to this day.”

wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (25) Garcia, Fall 2005 © UCB

1988-1996 – Kerberos Random # Generator

•“The authors of the Kerberos
security system neglect to properly
"seed! the program!s random number
generator with a truly random seed.

•As a result, for eight years it is
possible to trivially break into any
computer that relies on Kerberos for
authentication. It is unknown if this
bug was ever actually exploited.”

wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (26) Garcia, Fall 2005 © UCB

January 15, 1990 – AT&T Network Outage

• “A bug in a new release of the software
that controlled AT&T!s #4ESS long distance
switches caused these mammoth computers to
crash when they received a specific message
from one of their neighboring machines – a
message that the neighbors send out when
they recover from a crash.

• One day a switch in New York crashed and
rebooted, causing its neighboring switches to
crash, then their neighbors! neighbors, and so
on. Soon, 114 switches were crashing and
rebooting every six seconds, leaving an
estimated 60,000 people without long distance
service for nine hours. The fix: engineers load
the previous software release..”

wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (27) Garcia, Fall 2005 © UCB

1993 – Intel Pentium floating point divide

• “A silicon error causes Intel!s highly
promoted Pentium chip to make
mistakes when dividing floating-pt
#s that occur within a specific range.

• For example, dividing 4195835.0/3145727.0
yields 1.33374 instead of 1.33382, an error of
0.006 percent. Although the bug affects few
users, it becomes a public relations nightmare.

• With an estimated 3 million to 5 million
defective chips in circulation, at first Intel only
offers to replace Pentium chips for consumers
who can prove that they need high accuracy;
eventually the company relents and agrees to
replace the chips for anyone who complains.
The bug ultimately costs Intel $475 million.”

wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (28) Garcia, Fall 2005 © UCB

1995/1996 – The Ping of Death

•“A lack of sanity checks and
error handling in the IP
fragmentation reassembly
code makes it possible to crash a wide
variety of operating systems by
sending a malformed "ping! packet
from anywhere on the internet.

•Most obviously affected are
computers running Windows, which
lock up and display the so-called "blue
screen of death! when they receive
these packets. But the attack also
affects Macintoshes and Unixes too.”
wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (29) Garcia, Fall 2005 © UCB

June 4, 1996 – Ariane 5 Flight 501

• Working code for the Ariane 4 rocket
is reused in the Ariane 5, but the
Ariane 5!s faster engines trigger a
bug in an arithmetic routine inside
the rocket!s flight computer.

• The error is in the code that converts a 64-bit
floating-point number to a 16-bit signed integer.
The faster engines cause the 64-bit numbers to
be larger in the Ariane 5 than in the Ariane 4,
triggering an overflow condition that results in
the flight computer crashing.

• First Flight 501!s backup computer crashes,
followed 0.05 seconds later by a crash of the
primary computer. As a result, the rocket!s
primary processor overpowers the rocket!s
engines and causes the rocket to disintegrate
40 seconds after launch.
wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (30) Garcia, Fall 2005 © UCB

November 2000 – NCI, Panama City

• In a series of accidents, therapy planning
SW created by Multidata Systems International,
a U.S. firm, miscalculates the proper dosage of
radiation for patients undergoing radiation therapy.

• Multidata!s SW allows a radiation therapist to draw on a
computer screen the placement of metal shields called
“blocks” designed to protect healthy tissue from the
radiation. But the software will only allow technicians to use
four shielding blocks, and the Panamanian doctors wish to
use five.

• The doctors discover that they can trick the software by
drawing all five blocks as a single large block with a hole in
the middle. What the doctors don't realize is that the Multidata
software gives different answers in this configuration
depending on how the hole is drawn: draw it in one direction
and the correct dose is calculated, draw in another direction
and the software recommends twice the necessary exposure.

• At least 8 patients die, while another 20 receive overdoses
likely to cause significant health problems. The physicians,
who were legally required to double-check the computer!s
calculations by hand, are indicted for murder.
wired.com/news/technology/bugs/0,2924,69355,00.html

CS61C L20 Introduction to Pipelined Execution, pt II (31) Garcia, Fall 2005 © UCB

What can you do about it?

•Debug & test
rigorously, as if lives
depended on it

• They just might!

•Learn from this book:

CS61C L20 Introduction to Pipelined Execution, pt II (32) Garcia, Fall 2005 © UCB

Peer Instruction (1/2)

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full)
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

•How many pipeline stages (clock cycles) per
loop iteration to execute this code?

1
2
3
4
5
6
7
8
9
10

CS61C L20 Introduction to Pipelined Execution, pt II (34) Garcia, Fall 2005 © UCB

Peer Instruction (2/2)

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full).
Rewrite this code to reduce pipeline stages
(clock cycles) per loop to as few as possible.
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

•How many pipeline stages (clock cycles) per
loop iteration to execute this code?

1
2
3
4
5
6
7
8
9
10

CS61C L20 Introduction to Pipelined Execution, pt II (36) Garcia, Fall 2005 © UCB

“And in Conclusion..”

•Pipeline challenge is hazards
• Forwarding helps w/many data hazards

•Delayed branch helps with control hazard in
5 stage pipeline

•More aggressive performance:
•Superscalar

•Out-of-order execution

•You can be creative with your pipelines

•Learn from our top 10 worst SW bugs…
• Test, test, test. Expect the unexpected.

•Design w/failure as possibility! Redundancy!

