
CS61C L19 Introduction to Pipelined Execution (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #19
 Introduction to Pipelined Execution

2005-11-07
There is one handout

today at the front and

back of the room!

IBM slows light down! !
IBM has created a chip

that slows the speed of light down,
which can lead to optical computers

with fewer heat problems than
current silicon designs!

news.zdnet.com/IBM+slows+light,+readies+it+for+networking/2100-9584_22-5928541.html

CPS
today!

CS61C L19 Introduction to Pipelined Execution (2) Garcia, Fall 2005 © UCB

°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements

• 2. Select set of datapath components & establish clock
methodology

• 3. Assemble datapath meeting the requirements

• 4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer.

• 5. Assemble the control logic

°Control is the hard part

°MIPS makes that easier
• Instructions same size

• Source registers always in same place

• Immediates same size, location

• Operations always on registers/immediates

Review: Single cycle datapath

Control

Datapath

Memory

Processor

Input

Output

CS61C L19 Introduction to Pipelined Execution (3) Garcia, Fall 2005 © UCB

Review (1/3)

•Datapath is the hardware that
performs operations necessary to
execute programs.

•Control instructs datapath on what to
do next.

•Datapath needs:

• access to storage (general purpose
registers and memory)

• computational ability (ALU)

• helper hardware (local registers and PC)

CS61C L19 Introduction to Pipelined Execution (4) Garcia, Fall 2005 © UCB

Review (2/3)

•Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)

2. Instruction Decode (Read Registers)

3. ALU (Computation)

4. Memory Access

5. Write to Registers

•ALL instructions must go through ALL
five stages.

CS61C L19 Introduction to Pipelined Execution (5) Garcia, Fall 2005 © UCB

Review Datapath

P
C

in
s
tr

u
c
ti
o

n

m
e

m
o

ry

+4

rt

rs

rd

re
g

is
te

rs

ALU

D
a

ta

m
e

m
o

ry

imm

1. Instruction

Fetch

2. Decode/

 Register

Read

3. Execute 4. Memory
5. Write

Back

CS61C L19 Introduction to Pipelined Execution (6) Garcia, Fall 2005 © UCB

Outline

•Pipelining Analogy

•Pipelining Instruction Execution

•Hazards

CS61C L19 Introduction to Pipelined Execution (7) Garcia, Fall 2005 © UCB

Gotta Do Laundry

° Ann, Brian, Cathy, Dave
each have one load of
clothes to wash, dry,
fold, and put away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30
minutes

° “Stasher” takes 30
minutes to put clothes
into drawers

° Washer takes 30
minutes

CS61C L19 Introduction to Pipelined Execution (8) Garcia, Fall 2005 © UCB

Sequential Laundry

•Sequential laundry takes
8 hours for 4 loads

T

a

s

k

O

r

d

e

r

B

C

D

A

30
Time

3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

CS61C L19 Introduction to Pipelined Execution (9) Garcia, Fall 2005 © UCB

Pipelined Laundry

•Pipelined laundry takes
3.5 hours for 4 loads!

T

a

s

k

O

r

d

e

r

B

C

D

A

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS61C L19 Introduction to Pipelined Execution (10) Garcia, Fall 2005 © UCB

General Definitions

•Latency: time to completely execute a
certain task

• for example, time to read a sector from
disk is disk access time or disk latency

•Throughput: amount of work that can
be done over a period of time

CS61C L19 Introduction to Pipelined Execution (11) Garcia, Fall 2005 © UCB

Pipelining Lessons (1/2)
• Pipelining doesn!t help

latency of single task, it
helps throughput of entire
workload

• Multiple tasks operating
simultaneously using
different resources

• Potential speedup =
Number pipe stages

• Time to “fill” pipeline and
time to “drain” it reduces
speedup:
2.3X v. 4X in this example

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30

T

a

s

k

O

r

d

e

r

CS61C L19 Introduction to Pipelined Execution (12) Garcia, Fall 2005 © UCB

Pipelining Lessons (2/2)
• Suppose new

Washer takes 20
minutes, new
Stasher takes 20
minutes. How much
faster is pipeline?

• Pipeline rate limited
by slowest pipeline
stage

• Unbalanced lengths
of pipe stages also
reduces speedup

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30

T

a

s

k

O

r

d

e

r

CS61C L19 Introduction to Pipelined Execution (13) Garcia, Fall 2005 © UCB

Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:
 Mem-ref: Calculate Address
 Arith-log: Perform Operation

4) Memory:
 Load: Read Data from Memory
 Store: Write Data to Memory

5) Write Back: Write Data to Register

CS61C L19 Introduction to Pipelined Execution (14) Garcia, Fall 2005 © UCB

Pipelined Execution Representation

•Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

Time

CS61C L19 Introduction to Pipelined Execution (15) Garcia, Fall 2005 © UCB

Review: Datapath for MIPS

•Use datapath figure to represent pipeline

IFtch Dcd Exec Mem WB

A
L

U I$ Reg D$ Reg

P
C

in
s
tr

u
c
ti
o

n

m
e

m
o

ry
+4

rt

rs

rd

re
g

is
te

rs

ALU

D
a

ta

m
e

m
o

ry

imm

1. Instruction

Fetch
2. Decode/

 Register Read
3. Execute 4. Memory

5. Write

Back

CS61C L19 Introduction to Pipelined Execution (16) Garcia, Fall 2005 © UCB

Graphical Pipeline Representation

I

n

s

t

r.

O

r

d

e

r

Load

Add

Store

Sub

Or

 I$

Time (clock cycles)

 I$

A
L

U

Reg

Reg

 I$

 D$

A
L

U

A
L

U

Reg

 D$

Reg

 I$

 D$

Reg
A

L
U

Reg Reg

Reg

 D$

Reg

 D$

A
L

U

(In Reg, right half highlight read, left half write)

Reg

 I$

CS61C L19 Introduction to Pipelined Execution (17) Garcia, Fall 2005 © UCB

Example

•Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instr rate

•Nonpipelined Execution:

• lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns

•Pipelined Execution:

• Max(IF,Read Reg,ALU,Memory,Write Reg)
= 2 ns

CS61C L19 Introduction to Pipelined Execution (18) Garcia, Fall 2005 © UCB

Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

T

a

s

k

O

r

d

e

r

B

C

D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS61C L19 Introduction to Pipelined Execution (19) Garcia, Fall 2005 © UCB

Administrivia

•Any administrivia?

CS61C L19 Introduction to Pipelined Execution (20) Garcia, Fall 2005 © UCB

Problems for Computers

•Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

• Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

• Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard; “bubbles” in the pipeline

• Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

CS61C L19 Introduction to Pipelined Execution (21) Garcia, Fall 2005 © UCB

Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
UReg D$ Reg

A
L

U I$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

CS61C L19 Introduction to Pipelined Execution (22) Garcia, Fall 2005 © UCB

Structural Hazard #1: Single Memory (2/2)

•Solution:

• infeasible and inefficient to create
second memory

• (We!ll learn about this more next week)

• so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

• have both an L1 Instruction Cache and
an L1 Data Cache

• need more complex hardware to control
when both caches miss

CS61C L19 Introduction to Pipelined Execution (23) Garcia, Fall 2005 © UCB

Structural Hazard #2: Registers (1/2)

Can!t read and write to registers simultaneously

 I$

sw

Instr 1

Instr 2

Instr 3

Instr 4
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
UReg D$ Reg

A
L

U I$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

CS61C L19 Introduction to Pipelined Execution (24) Garcia, Fall 2005 © UCB

Structural Hazard #2: Registers (2/2)

•Fact: Register access is VERY fast:
takes less than half the time of ALU
stage

•Solution: introduce convention

• always Write to Registers during first half
of each clock cycle

• always Read from Registers during
second half of each clock cycle

• Result: can perform Read and Write
during same clock cycle

CS61C L19 Introduction to Pipelined Execution (25) Garcia, Fall 2005 © UCB

Control Hazard: Branching (1/7)

Where do we do the compare for the branch?

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4
A

L
U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
UReg D$ Reg

A
L

U I$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

CS61C L19 Introduction to Pipelined Execution (26) Garcia, Fall 2005 © UCB

Control Hazard: Branching (2/7)

•We put branch decision-making
hardware in ALU stage

• therefore two more instructions after the
branch will always be fetched, whether or
not the branch is taken

•Desired functionality of a branch

• if we do not take the branch, don!t waste
any time and continue executing
normally

• if we take the branch, don!t execute any
instructions after the branch, just go to
the desired label

CS61C L19 Introduction to Pipelined Execution (27) Garcia, Fall 2005 © UCB

Control Hazard: Branching (3/7)

• Initial Solution: Stall until decision is
made

• insert “no-op” instructions: those that
accomplish nothing, just take time

• Drawback: branches take 3 clock cycles
each (assuming comparator is put in ALU
stage)

CS61C L19 Introduction to Pipelined Execution (28) Garcia, Fall 2005 © UCB

Control Hazard: Branching (4/7)

•Optimization #1:

• move asynchronous comparator up to
Stage 2

• as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)

• Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

• Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS61C L19 Introduction to Pipelined Execution (29) Garcia, Fall 2005 © UCB

• Insert a single no-op (bubble)

Control Hazard: Branching (5/7)

add

beq

lw

A
L

U I$ Reg D$ Reg

A
L

U I$ Reg D$ Reg
A

L
UReg D$ Reg I$

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

bub

ble

• Impact: 2 clock cycles per branch
instruction ! slow

CS61C L19 Introduction to Pipelined Execution (30) Garcia, Fall 2005 © UCB

Control Hazard: Branching (6/7)

•Optimization #2: Redefine branches

• Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

• New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

CS61C L19 Introduction to Pipelined Execution (31) Garcia, Fall 2005 © UCB

Control Hazard: Branching (7/7)

•Notes on Branch-Delay Slot

• Worst-Case Scenario: can always put a
no-op in the branch-delay slot

• Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

- re-ordering instructions is a common
method of speeding up programs

- compiler must be very smart in order to find
instructions to do this

- usually can find such an instruction at least
50% of the time

- Jumps also have a delay slot…

CS61C L19 Introduction to Pipelined Execution (32) Garcia, Fall 2005 © UCB

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS61C L19 Introduction to Pipelined Execution (33) Garcia, Fall 2005 © UCB

Peer Instruction

A. Thanks to pipelining, I have reduced the time it
took me to wash my shirt.

B. Longer pipelines are always a win (since less
work per stage & a faster clock).

C. We can rely on compilers to help us avoid data
hazards by reordering instrs.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L19 Introduction to Pipelined Execution (34) Garcia, Fall 2005 © UCB

Peer Instruction Answer

A. Thanks to pipelining, I have reduced the time it
took me to wash my shirt.

B. Longer pipelines are always a win (since less
work per stage & a faster clock).

C. We can rely on compilers to help us avoid data
hazards by reordering instrs.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

F A L S E
F A L S E

A. Throughput better, not execution time

B. “…longer pipelines do usually mean faster
clock, but branches cause problems!

C. “they happen too often & delay too long.”
Forwarding! (e.g, Mem ! ALU)

F A L S E

CS61C L19 Introduction to Pipelined Execution (35) Garcia, Fall 2005 © UCB

Things to Remember (1/2)

•Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, execute far more quickly.

•What makes this work?

• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

CS61C L19 Introduction to Pipelined Execution (36) Garcia, Fall 2005 © UCB

Things to Remember (2/2)

•Pipelining is a BIG IDEA

• widely used concept

•What makes it less than perfect?

• Structural hazards: suppose we had
only one cache?
! Need more HW resources

• Control hazards: need to worry about
branch instructions?
 ! Delayed branch

• Data hazards: an instruction depends on
a previous instruction?

