

Anatomy: 5 components of any Computer

Memory

(where

programs data

live wher running) Kevboard.

Mouse

Disk

(where

programs

live when

not running)

Display.

Garcia, Fall 2005 @ UCE

Garcia, Fall 2005 © UCB

Printer

Devices

Input

Output

Personal Computer

This week

and next

Cal

Compute

ontro

("brain")

("brawn")

Processo

Review

- Use muxes to select among input
 S input bits selects 2^s inputs
 - $\boldsymbol{\cdot}$ Each input can be n-bits wide, indep of S
- Implement muxes hierarchically
- ALU can be implemented using a mux
 Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
 XOR serves as conditional inverter
- Programmable Logic Arrays are often used to implement our CL

instruction to determine setting of control points that effects the register transfer.

5. Assemble the control logic

	Peer Instruction		
^	If the destination reg is the same		ABC
А.	as the source req. we could	1:	FFF
	compute the incorrect value!	2:	FFT FTF
-	Weine name to be able to need 0	4:	FTT
в.	we re going to be able to read 2	5:	TFF
	registers and write a 3 rd in 1 cycle	7:	TTF
C.	Datapath is hard, Control is easy	8:	TTT

	Peer Instruction		
Α.	SW can peek at HW (past ISA		ABC
	abstraction boundary) for optimizations	1:	FFF
Б	SW can depend on particular HW	2:	FFT
Б.	Sw can depend on particular HW	4:	FTT
		5:	TFF
С			
.	Timing diagrams serve as a critical	6:	TFT
•.	Timing diagrams serve as a critical debugging tool in the EE toolkit	6: 7:	TFT TTF

	Peer Instruction		
Α.	(a+b)• (a +b) = b		ABC
В.	N-input gates can be thought of cascaded 2-	1:	FFF
	input gates. I.e.,	3:	FTF
	$(a \Delta b \Delta c \Delta d) = a \Delta (b \Delta (c \Delta d))$ where Δ is one of AND, OR, XOR, NAND	4:	FTT
^	You can use NOP(a) with clover wiring to	5:	TFF
0.	simulate AND. OR. & NOT	7:	TTF
Ca		8:	TTT

	Peer Instruction		
۸	Truth table for mux with 4-bits of		ABC
	signals has 2 ⁴ rows	1:	FFF
_		3:	FFT
в.	We could cascade N 1-bit shifters	4:	FTT
			TTTT
	to make 1 N-bit shifter for sll, srl	5 :	TEE
<u> </u>	to make 1 N-bit shifter for sll, srl	5: 6:	TFT
C.	to make 1 N-bit shifter for sll, srl If 1-bit adder delay is T, the N-bit	5: 6: 7:	TFT TTF