CS61C : Machine Structures

Lecture #16
Representations of Combinatorial Logic Circuits

CPS There are two handouts

today! 2005-10-26 today at the front and

back of the room!

Lecturer PSOE, new dad Dan Garcia

www.cs .berkeley.edu/~ddgarcia

Car makes its own fuel =

»' 8 An Israeli company has :
mvented a car that can produceits| &
own Hydrogen using common metals | mm. /)¢
like Magnesium and Aluminum.
ﬂxhaust” iIs harmless metal oxide!

www.isracast.com/tech news/231005 tech.htm

CS61C L15 Representations of Combinatorial Logic Circuits (1) = Garcia, Fall 2005 © UCB

Review

* Pipeline big-delay CL for faster clock
 Finite State Machines extremely useful
* You’ll see them again in 150, 152 & 164

e Use this table and techniques we
learned to transform from 1 to another

ﬂ CS61C L15 Representations of Combinatorial Logic Circuits (2) Garcia, Fall 2005 © UCB

Today

e Data Multiplexors

* Arithmetic and Logic Unit

e Adder/Subtractor
 Programmable Logic Arrays

ﬂ CS61C L15 Representations of Combinatorial Logic Circuits (3) Garcia, Fall 2005 © UCB

Data Multiplexor (here 2-to-1, n-bit-wide)

Truth table
S| C
O| A
1| B

N instances of 1-bit-wide mux
How many rows in TT?

@
b

C

S

ab + sab + sab + sab
(ab + ab) + s(ab + ab)
(a(b+D)) + s((@+ a)b)
(a(1) +s((1)b)

= Sa + sb

% CS61C L15 Representations of Combinatorial Logic Circuits (5) Garcia, Fall 2005 © UCB

&
[-

S
S
S
S

How do we build a 1-bit-wide mux?

sa + sb

a.

ﬂ CS61C L15 Representations of Combinatorial Logic Circuits (6) Garcia, Fall 2005 © UCB

4-to-1 Multiplexor?
How many rows in TT?

a b A

00 ©) 10 1] <
§= S\ So

€

2 e = S1Sp9a + S1S9b + s1Spgc + s1spd

CS61C L15 Representations of Combinatorial Logic Circuits (7) Garcia, Fall 2005 © UCB

Is there any other way to do it?

Hint: NCAA tourney!

Ans: Hierarchically!

Q CS61C L15 Representations of Combinatorial Logic Circuits (8) Garcia, Fall 2005 © UCB

Do you really understand NORs?
lf one inputis 1, what is a NOR?

If one input is 0, what is a NOR?

A B NOR A — NOR
0O 01 \ B —»
010 B —lo
110
0—;/ A| NOR

Q CS61C L15 Representations of Combinatorial Logic Circuits (9) Garcia, Fall 2005 © UCB

Do you really understand NANDs?
If one input is 1, what is a NAND?

o If one input is 0, what is a NAND?

A B NAND A _FDO_’ —
O 01 \ B —»
011 o
1‘1’(1) B — NAND
B—;/ A INAND

Q CS61C L15 Representations of Combinatorial Logic Circuits (10) Garcia, Fall 2005 © UCB

What does it mean to “clobber” midterm?

 You STILL have to take the final even if you
aced the midterm!

* The final will contain midterm-material Qs
and new, post-midterm Qs

* They will be graded separately

e If you do “better” on the midterm-material,
weé will clobber your midterm with the “new”
score! If you do'worse, midterm unchanged.

e What does “better” mean?
- Better w.r.t. Standard Deviations around mean

e What does “new” mean?

- Score based on remapping St. Dev. score on
final midterm-material to midterm score St. Dev.

CS61C L15 Representations of Combinatorial Logic Circuits (11) Garcia, Fall 2005 © UCB

“Clobber the midterm” example

 Midterm
 Mean: 45

- Standard Deviation: 14
* You got a 31, one ¢ below. l.e., mean - ¢

e Final Midterm-Material Questions
* Mean: 40
- Standard Deviation: 20
* You got a 60, one ¢ above
- Your new midterm score is now mean + O
(&(=45 + 14 =59 (~ double your old score)!

CS61C L15 Representations of Combinatorial Logic Circuits (12) Garcia, Fall 2005 © UCB

Administrivia

 Any administrivia?

@ CS61C L15 Representations of Combinatorial Logic Circuits (13) Garcia, Fall 2005 © UCB

Arithmetic and Logic Unit

* Most processors contain a special
logic block called “Arithmetic and
Logic Unit” (ALU)

We’ll show gou an easy one that does

ADD, SUB, bitwise AND, bitwise OR
A B
fz fl nen S=00, R=A+B

\ A\\t\) A nen S=01, R=A-B
B hen S=10, R=A AND B

1o hen S=11, R=A OR B

Q CS61C L15 Representations of Combinatorial Logic Circuits (14) Garcia, Fall 2005 © UCB

S ===

Our simple ALU

S — 0ddfsultract \ AND J [oR

”T | 32 32
ovz,r{l \o:[‘ | 1_ | .

w CS61C L15 Representations of Combinatorial Logic Circuits (15) Garcia, Fall 2005 © UCB

Adder/Subtracter Design -- how?

* Truth-table, then * Look at breaking the
determine canonical problem down into
form, then minimize smaller pieces that
and implement as we can cascade or

we’ve seen before hierarchically layer

@ CS61C L15 Representations of Combinatorial Logic Circuits (16) Garcia, Fall 2005 © UCB

Adder/Subtracter — One-bit adder LSB...

dp b() Sog €4
+ by by by | by O 1|1 O
S3 S9 S1 SO 1 0 1 0
1 1]0 1
S) —
C1

ﬂ CS61C L15 Representations of Combinatorial Logic Circuits (17)

Garcia, Fall 2005 © UCB

Adder/Subtracter — One-bit adder (1/2)...

&
o
AL
L
S
+
ok

O 0 010 0
O 0 111 0
dg g |y | €g 0 1 0|1 O
+ bs by | by | by O 1 110 1
S3 S92 | S1 | S0 0 0 1 0
O 110 ‘
1 010
I 11
S; =
Ci+t1 =

ﬂ CS61C L15 Representations of Combinatorial Logic Circuits (18) Garcia, Fall 2005 © UCB

Adder/Subtracter — One-bit adder (2/2)...

O
b
Ce

S; = XOR(CLZ', bz', Ci)
Ci+1 = MAJ(CL@, bz', Ci) — az-bz- o UEE = bici

w CS61C L15 Representations of Combinatorial Logic Circuits (19)

Garcia, Fall 2005 © UCB

N 1-bit adders = 1 N-bit adder

What about overflow?
Overflow =c_,?

ﬂ CS61C L15 Representations of Combinatorial Logic Circuits (20) Garcia, Fall 2005 © UCB

What about overflow?

e Consider a 2-bit signed # & overflow:
*10 = -2 + -2 or -1 b a *%
.11 = -1 + -2 only 4|
00 0 NOTHING! | 4 L # ko

l

0l = 1 + 1 only ©

S So

e Highest adder
- C, = Carry-in = C;,, C, = Carry-out = C,
*No C_,; or C;, = NO overflow!

What.c. and C_,, = NO overflow!
op?

CS61C L15 Representations of Combinatorial Logic Circuits (21) Garcia, Fall 2005 © UCB

What about overflow?

e Consider a 2-bit signhed # & overflow:

10 = -2 N U T
11 = -1 i
00 = O - c.
01 = 1 C, T | #
e Overflows when... 5, So

overflow = ¢,, XOR ¢,,_1

Q CS61C L15 Representations of Combinatorial Logic Circuits (22) Garcia, Fall 2005 © UCB

Extremely Clever Subtractor

}7w-\ O -\

SUR

CNQ\"F ‘ou)

ﬂ CS61C L15 Representations of Combinatorial Logic Circuits (23) Garcia, Fall 2005 © UCB

Review: Finite State Machine (FSM)

 States _
represent possible
output values.

e Transitions
represent changes
between states
based on inputs.

 Implement
with CL and
clocked register
feedback.

Q PS "
CS61C L15 Representations of Combinatorial Logic Circuits (24)L Garcia, Fall 2005 © UCB

Finite State Machines extremely useful!

* They define

- How output signals respond to input
signals and previous state.

- How we change states depending on
input signals and previous state

 We could implement very detailed
FSMs w/Programmable Logic Arrays

@ CS61C L15 Representations of Combinatorial Logic Circuits (25) Garcia, Fall 2005 © UCB

Taking advantage of sum-of-products

e Since sum-of-products is a convenient
notation and way to think about
design, offer hardware building blocks
that match that notation

* One example is
Programmable Logic Arrays (PLAS)

* Designed so that can select (program)
ands, ors, complements after you get
the chip

- Late in design process, fix errors, figure
out what to do later, ...

ﬂ CS61C L15 Representations of Combinatorial Logic Circuits (26) Garcia, Fall 2005 © UCB

Programmable Logic Arrays

* Pre-fabricated building block of many
AND/OR gates

- “Programmed” or “Personalized"” by making or
breaking connections among gates

- Programmable array block diagram for sum of

products form _
Or Programming:
l l °© o l - How to combine product terms?

inputs - How many outputs?
>
>
AND product o
array array
terms
>
And Prograrr_imlng: outputs
* How many inputs? . e .

- How to combine inputs?
@ - How many product terms?

CS61C L15 Representations of Combinatorial Logic Circuits (27) Garcia, Fall 2005 © UCB

Enabling Concept

e Shared product terms among outputs

FO =A O +(.CD
F1 = %_CC + CAB
example: FZ = ’J)

F3 =B'C +CA Dinput side: 3 inputs

. . 6 = unco pleme c}ed in term
personality matrix = comp lemented in term
Product]inputs joutputs ~ — = does not participate
Aicgrm 'fi‘ '13 ¢ I(:)O ';1 ';2 (F)3 output side: 4 outputs
B'C “ o0 1lo o o 1 1 = term connected to output
AC' 1 —olo 100 = no connection to output
B'C - 0 0|J1 01O
1 — — 0 0 reuse of terms;

Before Programming

 All possible connections available before

“programming”
—+ —+
YIVIY
L
-
L
___f
N\
-/

|
J

UL

G TRy

CS61C L15 Representations of Combinatorial Logic Circuits (29) Garcia, Fall 2005 © UCB

After Programming

 Unwanted connections are "blown"
- Fuse (normally connected, break unwanted

ones)
- Anti-fuse (normally disconnected, make wanted
connections)
A B C
CT L7177
YIY Y
 \AB
-
\B'C
1/
NAC!
.
—\BICI
-/
[\A ,
— |
!

m
D=
_
—t
=T
_
N
— {
_
W

I
Q CS61C L15 Representations of Combinatorial Logic Circuits (30) Garcia, Fall 2005 © UCB

Alternate Representation

 Short-hand notation--don't have to draw all
the wires

- X Signifies a connection is present and
perpendicular signal is an input to gate
notation for implementing
FO=AB + A'B
F1=CD'" + C'D

IIXIIyiiL _);];Bki{[i‘y N
eeeeee%} ¥——¥— R T_X A'B'
eeeeee%%_x—x Kk — el 1 :\/ A CD'
A N oL T T

VUV Y

AB+A'B'
CD'+CD
CS61C L15 Representations of Combinatorial Logic Circuits (31) Garcia, Fall 2005 © UCB

“And In conclusion...”

* Use muxes to select among input
- S input bits selects 25 inputs
- Each input can be n-bits wide, indep of S

* Implement muxes hierarchically

 ALU can be implemented using a mux
- Coupled with basic block elements

* N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input

 XOR serves as conditional inverter

o Pro%ram_mable Logic Arrays are often
used to implement our CL

CS61C L15 Representations of Combinatorial Logic Circuits (32) Garcia, Fall 2005 © UCB

Peer Instruction

A. SW can peek at HW (past ISA abstraction ABC

boundary) for optimizations l: FFF

: 2: FFET

B. SW can depend on particular HW 3. FTF

implementation of ISA 4 FTT

C. Timing diagrams serve as a critical debugging | >: TFF

tool in the EE toolkit 6: TFT

7: TTF

Qf 8: TTT
CS61C L15 Representations of Combinatorial Logic Circuits (33) Garcia, Fall 2005 © UCB

Peer Instruction

A. HW feedback akin to SW recursion .. ?ﬁg
B. We can implement a D-Q flipflop |2: "7
as simple CL (And, Or, Not gates) |}’ ior

C. You can build a FSM to signal A
when an equal number of Os and |7: TIF

(1s has appeared in the input. 8: TTT

S (CS61C L15 Representations of Combinatorial Logic Circuits (34) Garcia, Fall 2005 © UCB

Peer Instruction

A. (a+b): (a+b)=Db ABC
B. N-input gates can be thought of cascaded 2- ; §§§
input gates. l.e., 3. FTF
(@aAbcAdAe)=aA(bcA(dAe)) 4: FTT
where A is one of AND, OR, XOR, NAND 5. TFF

C. You can use NOR(s) with clever wiring to 6: TFT
simulate AND, OR, & NOT 7: TTF

8: TTT

w L]
M CS61C L15 Representations of Combinatorial Logic Circuits (36) Garcia, Fall 2005 © UCB

Peer Instruction

A. Truth table for mux with 4-bits of |~ 2BC
signals has 2* rows 5. FET

B. We could cascade N 1-bit shifters | i
to make 1 N-bit shifter for sll, srl |5: Trr

6: TET

C. If 1-bit adder delay is T, the N-bit |7: TTF
(adder delay would alsobe T 8: TIT

S (CS61C L15 Representations of Combinatorial Logic Circuits (40) Garcia, Fall 2005 © UCB

