inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture #16 Representations of Combinatorial Logic Circuits

CPS 2005-10-26

There are two handouts today at the front and back of the room!

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Car makes its own fuel \Rightarrow

An Israeli company has

invented a car that can produce its own Hydrogen using common metals like Magnesium and Aluminum. "Exhaust" is harmless metal oxide!

www.isracast.com/tech_news/231005_tech.htm CS61C L15 Representations of Combinatorial Logic Circuits (1) ______ Garcia, Fall 2005 © UCB

Review

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 - You'll see them again in 150, 152 & 164
- Use this table and techniques we learned to transform from 1 to another

Today

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor
- Programmable Logic Arrays

Data Multiplexor (here 2-to-1, n-bit-wide)

CS61C L15 Representations of Combinatorial Logic Circuits (4)

Garcia, Fall 2005 © UCB

N instances of 1-bit-wide mux

How do we build a 1-bit-wide mux?

4-to-1 Multiplexor?

 $e = \overline{s_1 s_0}a + \overline{s_1} s_0 b + s_1 \overline{s_0} c + s_1 s_0 d$

Is there any other way to do it?

CS61C L15 Representations of Combinatorial Logic Circuits (8)

Garcia, Fall 2005 © UCB

Do you really understand NORs?

- If one input is 1, what is a NOR?
- If one input is 0, what is a NOR?

Do you really understand NANDs?

- If one input is 1, what is a NAND?
- If one input is 0, what is a NAND?

What does it mean to "clobber" midterm?

- You STILL have to take the final even if you aced the midterm!
- The final will contain midterm-material Qs and new, post-midterm Qs
- They will be graded separately
- If you do "better" on the midterm-material, we will clobber your midterm with the "new" score! If you do worse, midterm unchanged.
- What does "better" mean?
 - Better w.r.t. Standard Deviations around mean
- What does "new" mean?
 - Score based on remapping St. Dev. score on final midterm-material to midterm score St. Dev.

"Clobber the midterm" example

- Midterm
 - Mean: 45
 - Standard Deviation: 14

• You got a 31, one σ below. I.e., mean - σ

Final Midterm-Material Questions

- Mean: 40
- Standard Deviation: 20
- \bullet You got a 60, one σ above
- Your new midterm score is now mean + σ

• Any administrivia?

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when S=00, R=A+B when S=01, R=A-B when S=10, R=A AND B when S=11, R=A OR B

Our simple ALU

CS61C L15 Representations of Combinatorial Logic Circuits (15)

Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter – One-bit adder LSB...

	a_3	a_2	a_1	\mathbf{a}_0
+	b_3	b_2	b_1	\mathbf{b}_0
	s_3	s_2	s_1	s ₀

a_0	b_0	s ₀	c ₁
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

 $s_0 = c_1 = c_1 = c_1$

Adder/Subtracter – One-bit adder (1/2)...

					\mathbf{a}_i	\mathbf{b}_i	c_i	\mathbf{s}_i	\mathbf{c}_{i+1}
					0	0	0	0	0
	0	0			0	0	1	1	0
	a_3	a_2	a_1	a_0	0	1	0	1	0
+	b_3	b_2	b_1	b_0	0	1	1	0	1
	S 3	S 2	S 1	Sn	1	0	0	1	0
	0		L	0	1	0	1	0	1
					1	1	0	0	1
					1	1	1	1	1

CS61C L15 Representations of Combinatorial Logic Circuits (18)

Garcia, Fall 2005 © UCB

Adder/Subtracter – One-bit adder (2/2)...

$$s_i = \operatorname{XOR}(a_i, b_i, c_i)$$

$$c_{i+1} = \operatorname{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i$$

N 1-bit adders \Rightarrow 1 N-bit adder

What about overflow? Overflow = c_n ?

CS61C L15 Representations of Combinatorial Logic Circuits (20)

Garcia, Fall 2005 © UCB

Consider a 2-bit signed # & overflow:

- $\cdot 10 = -2 + -2 \text{ or } -1$ $\cdot 11 = -1 + -2 \text{ only}$
- $\bullet 00 = 0$ NOTHING!
- $\cdot 01 = 1 + 1$ only
- Highest adder
 - $C_1 = Carry-in = C_{in}$, $C_2 = Carry-out = C_{out}$
 - No C_{out} or $C_{in} \Rightarrow$ NO overflow!
- What $\cdot C_{in}$, and $C_{out} \Rightarrow NO$ overflow!
 - C_{in} , but no $C_{out} \Rightarrow A, B$ both > 0, overflow!

$$C_{out}$$
, but no $C_{in} \Rightarrow A,B$ both < 0, overflow!

CS61C L15 Representations of Combinatorial Logic Circuits (21)

a ao

#

b, a,

±

C,

Consider a 2-bit signed # & overflow:

- Overflows when...
 - C_{in}, but no C_{out} ⇒ A,B both > 0, overflow!
 C_{out}, but no C_{in} ⇒ A,B both < 0, overflow!

overflow = $c_n \operatorname{XOR} c_{n-1}$

Extremely Clever Subtractor

CS61C L15 Representations of Combinatorial Logic Circuits (23)

Review: Finite State Machine (FSM)

- States represent possible output values.
- Transitions represent changes between states based on inputs.
- Implement with CL and clocked register feedback.

CS61C L15 Representations of Combinatorial Logic Circuits (24)

Finite State Machines extremely useful!

• They define

- How output signals respond to input signals and previous state.
- How we change states depending on input signals and previous state
- We could implement very detailed FSMs w/Programmable Logic Arrays

Taking advantage of sum-of-products

- Since sum-of-products is a convenient notation and way to think about design, offer hardware building blocks that match that notation
- One example is **Programmable Logic Arrays** (PLAs)
- Designed so that can select (program) ands, ors, complements <u>after</u> you get the chip
 - Late in design process, fix errors, figure out what to do later, ...

Programmable Logic Arrays

- Pre-fabricated building block of many AND/OR gates
 - "Programmed" or "Personalized" by making or breaking connections among gates
 - Programmable array block diagram for sum of products form

Enabling Concept

Shared product terms among outputs

CS61C L15 Representations of Combinatorial Logic Circuits (28)

Before Programming

• All possible connections available before "programming"

CS61C L15 Representations of Combinatorial Logic Circuits (29)

Garcia, Fall 2005 © UCB

After Programming

- Unwanted connections are "blown"
 - Fuse (normally connected, break unwanted ones)
 - Anti-fuse (normally disconnected, make wanted connections)

Alternate Representation

- Short-hand notation--don't have to draw all the wires
 - X Signifies a connection is present and perpendicular signal is an input to gate

notation for implementing F0 = A B + A' B'

- Use muxes to select among input
 - S input bits selects 2^S inputs
 - Each input can be n-bits wide, indep of S
- Implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
 - XOR serves as conditional inverter

- A. SW can peek at HW (past ISA abstraction boundary) for optimizations
- B. SW can depend on particular HW implementation of ISA
- C. Timing diagrams serve as a critical debugging tool in the EE toolkit

A. HW feedback akin to SW recursion

- B. We can implement a D-Q flipflop as simple CL (And, Or, Not gates)
- C. You can build a FSM to signal when an equal number of 0s and 1s has appeared in the input.

CS61C L15 Representations of Combinatorial Logic Circuits (34)

- A. $(a+b) \cdot (\overline{a}+b) = b$
- B. N-input gates can be thought of cascaded 2input gates. I.e., $(a \Delta bc \Delta d \Delta e) = a \Delta (bc \Delta (d \Delta e))$ where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

- A. Truth table for mux with 4-bits of signals has 2⁴ rows
- B. We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl
- C. If 1-bit adder delay is T, the N-bit adder delay would also be T

CS61C L15 Representations of Combinatorial Logic Circuits (40)

Garcia, Fall 2005 © UCB