

Today

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor

Cal

Programmable Logic Arrays

Garcia, Fall 2005 © UCB

Adder/Subtracter – One-bit adder (1/2)									
					<u>a</u> _i	b _i	ci	Si	c_{i+1}
					0	0	0	0	0
	a_3	a_2	a_1	a_0	0	0	1	1	0
		_	1		0	1	0	1	0
+	b_3	b_2	b_1	\mathbf{b}_0	0	1	1	0	1
	S 3	S ₂	S ₁	S ₀	1	0	0	1	0
	~0	-2	-1	20	1	0	1	0	1
					1	1	0	0	1
					1	1	1	1	1
		s_i	_						
, _		+1	=						
Ľ	CS61C 15			pinatorial Logic Circuits (18)				~	rcia. Fall 2005 @

Garcia, Fall 2005 © UCE

	Peer Instruction		
Α.	SW can peek at HW (past ISA abstraction boundary) for optimizations	1:	ABC FFF
В.	SW can depend on particular HW implementation of ISA	2: 3: 4:	FFT FTF FTT
C.	Timing diagrams serve as a critical debugging tool in the EE toolkit	5: 6:	TFF TFT
Ca	C551C L15 Representations of Combinatorial Logic Circuits (33)	7: 8:	

_	Peer Instruction		
Δ.	HW feedback akin to SW recursion		ABC
_		1:	FFF FFT
	We can implement a D-Q flipflop as simple CL (And, Or, Not gates)	3:	FTF
	as simple OL (And, OI , Not gates)	4:	FTT TFF
C.			122
	You can build a FSM to signal	6:	TFT
	You can build a FSM to signal when an equal number of 0s and 1s has appeared in the input.	1.2.	TFT TTF

	Peer Instruction		
Α.	(a+b)• (ā+b) = b	1.	ABC
В.	N-input gates can be thought of cascaded 2-	2:	FFF
	input gates. I.e.,	2:	FTF
	$(a \Delta bc \Delta d \Delta e) = a \Delta (bc \Delta (d \Delta e))$	Δ·	FTT
	where Δ is one of AND, OR, XOR, NAND	5 :	TFF
C.	You can use NOR(s) with clever wiring to	6:	TFT
	simulate AND, OR, & NOT	7:	TTF
(a	/	8:	TTT
1	S CS61C L15 Representations of Combinatorial Logic Circuits (36)	Garcia, F	all 2005 © UCB

	Peer Instruction		
Α.	Truth table for mux with 4-bits of	1.	ABC
	signals has 2 ⁴ rows	2:	FFT
В.	We could cascade N 1-bit shifters	3:	FTF FTT
	to make 1 N-bit shifter for sll, srl	4: 5:	TFF
c	If 1-bit adder delay is T the N-bit	6:	TFT
<u>،</u>	If 1-bit adder delay is T, the N-bit adder delay would also be T	7:	TTF TTT
_	CS61C L15 Representations of Combinatorial Logic Circuits (40)	Garcia,	Fall 2005 © UCB