

Today
- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor
- Programmable Logic Arrays
Cal

N instances of 1-bit-wide mux
How many rows in TT?
$\begin{aligned} c & =\bar{s} a \bar{b}+\bar{s} a b+s \bar{a} b+s a b \\ & =\bar{s}(a \bar{b}+a b)+s(\bar{a} b+a b) \\ & =\bar{s}(a(\bar{b}+b))+s((\bar{a}+a) b) \\ & =\bar{s}(a(1)+s((1) b) \\ & =\bar{s} a+s b \end{aligned}$

yes

Review

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
- You'll see them again in 150, 152 \& 164
- Use this table and techniques we learned to transform from 1 to another

CS61C L15 Representations of Combinatorial Logic C Circuits (7)
Garcia, Fall 2005 ® UcB

What does it mean to "clobber" midterm?

- You STILL have to take the final even if you aced the midterm!
- The final will contain midterm-material Qs and new, post-midterm Qs
- They will be graded separately
- If you do "better" on the midterm-material, we will clobber your midterm with the "new" score! If you do worse, midterm unchanged.
- What does "better" mean?
- Better w.r.t. Standard Deviations around mean
- What does "new" mean?
- Score based on remapping St. Dev. score on final midterm-material to midterm score St. Dev.
Garcia, Fall 2005 ®uce

"Clobber the midterm" example

- Midterm

- Mean: 45
-Standard Deviation: 14
- You got a 31, one σ below. I.e., mean - σ
- Final Midterm-Material Questions
- Mean: 40
- Standard Deviation: 20
- You got a 60, one σ above
- Your new midterm score is now mean $+\sigma$

Cal
$=45+14=59$ (\sim double your old score)! SSCLIT Regresentations of Combinatorial Logic Circuits (12) Garcia, Fall 2005 © UCB

Administrivia

- Any administrivia?

SSS1C L 15 Representations of Combinatorial Logic Circuits (13) Garcia, Fall 2005 ® UCB

Adder/Subtracter - One-bit adder LSB...

$+$| a_{3} | a_{2} | a_{1} | a_{0} |
| :---: | :---: | :---: | :---: |
| $\mathrm{~b}_{3}$ | $\mathrm{~b}_{2}$ | $\mathrm{~b}_{1}$ | $\mathrm{~b}_{0}$ |
| $\mathrm{~s}_{3}$ | $\mathrm{~s}_{2}$ | $\mathrm{~s}_{1}$ | $\mathrm{~s}_{0}$ |
| | | | |

a_{0}	$\mathrm{~b}_{0}$	$\mathrm{~s}_{0}$	c_{1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$s_{0}=$
$c_{1}=$

CS61C L15 Representations of Combinatorial Logic Circuits (17) Garcia, Fall 2005 © UCB

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when $S=00, R=A+B$ when $S=01, R=A-B$ when $\mathrm{S}=10, \mathrm{R}=\mathrm{A}$ and B when $S=11, R=A$ or B

Cus
CS61C L15 Representations of Combinatorial Logic Circuits (14) Garcia, Fall 2005 © ucB

Adder/Subtracter Design -- how?

- Truth-table, then
determine canonical
form, then minimize
and implement as
we've seen before
- Look at breaking the problem down into smaller pieces that smaller pieces that hierarchically layer we've seen before

Cal

\qquad

$$
\begin{aligned}
& \text { Adder/Subtracter - One-bit adder (1/2)... } \\
& \begin{array}{cccc|cc}
\mathrm{a}_{i} & \mathrm{~b}_{i} & \mathrm{c}_{i} & \mathrm{~s}_{i} & \mathrm{c}_{i+1} \\
\hline \hline 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

What about overflow?

- Consider a 2-bit signed \# \& overflow:
- $10=-2+-2$ or -1
- $11=-1+-2$ only
-00 = 0 NOTHING!
- $01=1+1$ only
- Highest adder

- $\mathrm{C}_{1}=$ Carry-in $=\mathrm{C}_{\text {in }}, \mathrm{C}_{2}=$ Carry-out $=\mathrm{C}_{\text {out }}$
- No $\mathrm{C}_{\text {out }}$ or $\mathrm{C}_{\text {in }} \Rightarrow$ NO overflow!

What $\cdot C_{\text {in }}$, and $C_{\text {out }} \Rightarrow$ NO overflow!
op? $\cdot C_{\text {in }}$, but no $C_{\text {out }} \Rightarrow A, B$ both >0, overflow!
$\cdot C_{\text {out }}$, but no $C_{\text {in }} \Rightarrow A, B$ both <0, overflow!
cS61C L15 Representations of Combinatorial Logic Circuits (21)
Garcia, Fall 2005 ®ucB

Extremely Clever Subtractor

What about overflow?

- Consider a 2-bit signed \# \& overflow:
$10=-2$
$11=-1$
$00=0$
$01=1$
- Overflows when...

$\cdot C_{\text {in }}$, but no $C_{\text {out }} \Rightarrow A, B$ both >0, overflow! - $C_{\text {out }}$, but no $C_{\text {in }} \Rightarrow A, B$ both <0, overflow!
overflow $=c_{n}$ XOR c_{n-1} Cal

CS61C L L15 Representations of Combinatorial Logic Circuits (22) Garcia, Fall 2005 © UCB

Finite State Machines extremely useful!

- They define

- How output signals respond to input signals and previous state.
- How we change states depending on input signals and previous state
- We could implement very detailed FSMs w/Programmable Logic Arrays
 Garcia, Fall 2005 ® UCB

Taking advantage of sum-of-products

- Since sum-of-products is a convenient notation and way to think about design, offer hardware building blocks that match that notation
- One example is

Programmable Logic Arrays (PLAs)

- Designed so that can select (program) ands, ors, complements after you get the chip
- Late in design process, fix errors, figure out what to do later, ...
Cal SS61C $L 15$ Representations of Combinatorial Logic Circuits (26) Garcia, Fall 2005 ๒ UCB

Enabling Concept							
- Shared product terms among outputs							
$\begin{aligned} & F 0=A A^{\prime}+B^{\prime} C^{\prime} \\ & \text { F1 }=A^{\prime} C^{\prime}+A B \\ & \text { F2 }=B^{\prime} C^{\prime}+A B \\ & \text { F3 }=B^{\prime} C+A \text { input side: } 3 \text { inputs } \end{aligned}$							
personality matrix $\quad \delta=$ uncomplemented in term							
term A B C F0 F1 F2 F3 1							
 $A B$ 1 1 -1 0 1 1 0							
${ }_{\text {AC' }}{ }^{\text {A }}$							
$\mathrm{B}^{\mathrm{B}^{\prime} C^{\prime}}$-1 0 0 1 0 1 0							
C $1-\quad-\mid 100055$ product term's							

After Programming

- Unwanted connections are "blown"
- Fuse (normally connected, break unwanted ones)
- Anti-fuse (normally disconnected, make wanted connections)

Peer Instruction	
A. $(a+b) \cdot(\bar{a}+b)=b$ B. N-input gates can be thought of cascaded 2input gates. l.e., $(\mathrm{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$ where Δ is one of AND, OR, XOR, NAND	ABC $1:$ FFF $2:$ FFT $3:$ FTF 4: FTT 5: TFF
C. You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT	6: TFT 7: TTF 8: TTT
IS Cs6ic Lis Representations of Combinatorial Logic Circuits (36)	Garcia, Fall 2005

"And In conclusion..."

- Use muxes to select among input
-S input bits selects 2^{5} inputs
- Each input can be n-bits wide, indep of S
- Implement muxes hierarchically
- ALU can be implemented using a mux
-Coupled with basic block elements
- N -bit adder-subtractor done using N 1bit adders with XOR gates on input
- XOR serves as conditional inverter

Cal Programmable Logic Arrays are often

Peer Instruction

A. HW feedback akin to SW recursion
B. We can implement a D-Q flipflop as simple CL (And, Or, Not gates)
C. You can build a FSM to signal when an equal number of $0 s$ and is has appeared in the input. 2: FFT 3: FTF 3: FTF 5: FTF 6: TFT 7: TTF 7: TTE
8: TTT 8: TTT

