inst.eecs.berkeley.edu/~cs61c **CS61C : Machine Structures**

Lecture #15 **Representations of Combinatorial Logic Circuits**

2005-10-24 CPS today

There is one handout today at the front and back of the room!

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

World's Smallest Car! \Rightarrow

A car only 4nm across was developed by Rice U as a prototype. It actually "rolls on four wheels in a direction perp to its

No

axes". Buckyballs for wheels! CS61C L15 Representations of Combinatorial Logic Circuits (1) Garcia, Fall 2005 © UCB

Review

- We use feedback to maintain state
- Register files used to build memories
- D-FlipFlops used to build Register files
- Clocks tell us when D-FlipFlops change
 - Setup and Hold times important
- TODAY
 - Technique to be able to increase clock speed
 - Finite State Machines
 - Representation of CL Circuits
 - Truth Tables

- Logic Gates

- Boolean Algebra CS61C L15 Representations of Combinatorial Logic Circuits (2)

Pipelining to improve performance (1/2)

CS61C L15 Representations of Combinatorial Logic Circuits (3)

Pipelining to improve performance (2/2)

CS61C L15 Representations of Combinatorial Logic Circuits (4)

Finite State Machines Introduction

Finite State Machine Example: 3 ones...

Draw the FSM...

Truth table...

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

Hardware Implementation of FSM

CS61C L15 Representations of Combinatorial Logic Circuits (7)

General Model for Synchronous Systems

• Any administrivia?

Truth Tables

	a	b	С	d	У
	0	0	0	0	F(0,0,0,0)
	0	0	0	1	F(0,0,0,1)
	0	0	1	0	F(0,0,1,0)
	0	0	1	1	F(0,0,1,1)
a	0	1	0	0	F(0,1,0,0)
	0	1	0	1	F(0,1,0,1)
	0	1	1	0	F(0,1,1,0)
C Z	0	1	1	1	F(0,1,1,1)
	1	0	0	0	F(1,0,0,0)
$\alpha \longrightarrow$	1	0	0	1	F(1,0,0,1)
	1	0	1	0	F(1,0,1,0)
	1	0	1	1	F(1,0,1,1)
	1	1	0	0	F(1,1,0,0)
	1	1	0	1	F(1,1,0,1)
	1	1	1	0	F(1,1,1,0)
al	1	1	1	1	F(1,1,1,1)

TT Example #1: 1 iff one (not both) a,b=1

TT Example #2: 2-bit adder

How Many Rows?

TT Example #3: 32-bit unsigned adder

CS61C L15 Representations of Combinatorial Logic Circuits (15)

TT Example #3: 3-input majority circuit

a	b	C	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

And vs. Or review – Dan's mnemonic

AND Gate

Symbol

Definition

CS61C L15 Representations of Combinatorial Logic Circuits (18)

Logic Gates (2/2)

	a - m	ab	С
		00	0
XOR		01	1
		10	1
		11	0
	a - n	ab	c
	L p-c	00	1
NAND	D-D	01	1
		10	1
		11	0
	a - h	ab	С
	h_1)p-c	00	1
NOR		01	0
		10	0
		11	0

CS61C L15 Representations of Combinatorial Logic Circuits (19)

Cal

2-input gates extend to n-inputs

- N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the # of 1s at its input is odd ⇒

CS61C L15 Representations of Combinatorial Logic Circuits (20)

Truth Table ⇒ Gates (e.g., majority circ.)

Truth Table ⇒ Gates (e.g., FSM circ.)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

CS61C L15 Representations of Combinatorial Logic Circuits (22)

CS61C L15 Representations of Combinatorial Logic Circuits (23)

Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic
 - later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

Boolean Algebra (e.g., for majority fun.)

 $y = a \cdot b + a \cdot c + b \cdot c$

y = ab + ac + bc

Boolean Algebra (e.g., for FSM)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

$y = PS_1 \cdot \overline{PS_0} \cdot INPUT$

CS61C L15 Representations of Combinatorial Logic Circuits (25)

BA: Circuit & Algebraic Simplification

original circuit

equation derived from original circuit

algebraic simplification

BA also great for circuit <u>verification</u> Circ X = Circ Y? use BA to prove!

simplified circuit

Laws of Boolean Algebra

$x \cdot \overline{x} = 0$ $x + \overline{x} = 1$ x + 1 = 1 $x \cdot 0 = 0$ $x \cdot 1 = x$ x + 0 = xx + x = x $x \cdot x = x$ $x \cdot y = y \cdot x$ x + y = y + x(xy)z = x(yz) (x+y) + z = x + (y+z) $x(y+z) = xy + xz \qquad x + yz = (x+y)(x+z)$ (x+y)x = xxy + x = x $\overline{(x+y)} = \overline{x} \cdot \overline{y}$ $\overline{x \cdot y} = \overline{x} + \overline{y}$

complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem DeMorgan's Law

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

= $a(b+1) + c$ distribution, identity
= $a(1) + c$ law of 1's
= $a + c$ identity

Canonical forms (1/2)

Sum-of-products (ORs of ANDs)

Canonical forms (2/2)

$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$$

$$= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b) \quad distribution$$

$$= \overline{a}\overline{b}(1) + a\overline{c}(1) \quad complementarity$$

$$= \overline{a}\overline{b} + a\overline{c} \quad identity$$

CS61C L15 Representations of Combinatorial Logic Circuits (30)

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 - You'll see them again in 150, 152 & 164
- Use this table and techniques we learned to transform from 1 to another

