
CS61C L11 MIPS Instruction Rep III, Running a Program I (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #12 – MIPS Instruction Rep III,
Running a Program I

aka Compiling, Assembling, Linking, Loading (CALL)

2005-0xA
There is one handout
today at the front and

back of the room!

SF: Tiger over Daly ⇒
In a treat for the Bay

Area, the top golfers descended to
Harding Park in SF and saw a treat:
the two longest hitters battled in a

playoff before Daly “choked”.
sports.espn.go.com/golf/news/story?id=2185968

CS61C L11 MIPS Instruction Rep III, Running a Program I (2) Garcia, Fall 2005 © UCB

Review
•Reserve exponents, significands:

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

• Integer mult, div uses hi, lo regs
•mfhi and mflo copies out.

•Four rounding modes (to even default)
•MIPS FL ops complicated, expensive

CS61C L11 MIPS Instruction Rep III, Running a Program I (3) Garcia, Fall 2005 © UCB

Clarification - IEEE Four Rounding Modes

•Round towards + ∞
•ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2

•Round towards - ∞
•ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2

•Truncate
• Just drop the last bits (round towards 0)

•Round to (nearest) even (default)
•Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
• Like you learned in grade school
• Insures fairness on calculation
•Half the time we round up, other half down

• We gave examples in base 10 to show
you the 4 modes (only apply to .510)

• What really happens is…
1) in binary, not decimal!
2) at the lowest bit of the mantissa with the

guard bit(s) as our extra bit(s), and you need
to decide how these extra bit(s) affect the
result if the guard bits are “100…”

3) If so, you’re half-way between the
representable numbers.

E.g., 0.1010 is 5/8, halfway between our
representable 4/8 [1/2] and 6/8 [3/4]. Which
number do we round to? 4 modes!

CS61C L11 MIPS Instruction Rep III, Running a Program I (4) Garcia, Fall 2005 © UCB

Decoding Machine Language

•How do we convert 1s and 0s to C code?
Machine language ⇒ C?

•For each 32 bits:
• Look at opcode: 0 means R-Format, 2 or 3
mean J-Format, otherwise I-Format.
•Use instruction type to determine which
fields exist.
•Write out MIPS assembly code, converting
each field to name, register number/name,
or decimal/hex number.
• Logically convert this MIPS code into valid
C code. Always possible? Unique?

CS61C L11 MIPS Instruction Rep III, Running a Program I (5) Garcia, Fall 2005 © UCB

Decoding Example (1/7)

•Here are six machine language
instructions in hexadecimal:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

•Let the first instruction be at address
4,194,304ten (0x00400000hex).
•Next step: convert hex to binary

CS61C L11 MIPS Instruction Rep III, Running a Program I (6) Garcia, Fall 2005 © UCB

Decoding Example (2/7)

• The six machine language instructions in
binary:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

• Next step: identify opcode and format

1, 4-31 rs rt immediate
0 rs rt rd functshamtR

I
J target address2 or 3

CS61C L11 MIPS Instruction Rep III, Running a Program I (7) Garcia, Fall 2005 © UCB

Decoding Example (3/7)
•Select the opcode (first 6 bits)
to determine the format:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

•Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.
• Next step: separation of fields

R
R
I
R
I
J

Format:

CS61C L11 MIPS Instruction Rep III, Running a Program I (8) Garcia, Fall 2005 © UCB

Decoding Example (4/7)

•Fields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

•Next step: translate (“disassemble”) to
MIPS assembly instructions

R
R
I
R
I
J

Format:

CS61C L11 MIPS Instruction Rep III, Running a Program I (9) Garcia, Fall 2005 © UCB

Decoding Example (5/7)

•MIPS Assembly (Part 1):
Address: Assembly instructions:
0x00400000 or $2,$0,$0
0x00400004 slt $8,$0,$5
0x00400008 beq $8,$0,3
0x0040000c add $2,$2,$4
0x00400010 addi $5,$5,-1
0x00400014 j 0x100001

•Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)

CS61C L11 MIPS Instruction Rep III, Running a Program I (10) Garcia, Fall 2005 © UCB

Decoding Example (6/7)

•MIPS Assembly (Part 2):

or $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

•Next step: translate to C code
(be creative!)

CS61C L11 MIPS Instruction Rep III, Running a Program I (11) Garcia, Fall 2005 © UCB

Decoding Example (7/7)
•After C code (Mapping below)

$v0: product
$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand;
multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

Demonstrated Big 61C
Idea: Instructions are
just numbers, code is
treated like data

 or $v0,$0,$0
Loop: slt $t0,$0,$a1
 beq $t0,$0,Exit
 add $v0,$v0,$a0
 addi $a1,$a1,-1
 j Loop
Exit:

CS61C L11 MIPS Instruction Rep III, Running a Program I (12) Garcia, Fall 2005 © UCB

Administrivia…Midterm in 7 days!
• Project 2 due Wednesday (ok, Friday)
• Midterm 2005-10-17 @ 5:30-8:30pm Here!
• Covers labs,hw,proj,lec up through 7th wk
• Prev sem midterm + answers on HKN
• Bring…

• NO backpacks, cells, calculators, pagers, PDAs
• 2 writing implements (we’ll provide write-in

exam booklets) – pencils ok!
• One handwritten (both sides) 8.5”x11” paper
• One green sheet (corrections below to bugs

from “Core Instruction Set”)
1) Opcode wrong for Load Word.

It should say 23hex, not 0 / 23hex.
2) sll and srl should shift values in R[rt], not R[rs]

i.e. sll/srl: R[rd] = R[rt] << shamt

CS61C L11 MIPS Instruction Rep III, Running a Program I (13) Garcia, Fall 2005 © UCB

Review from before: lui
•So how does lui help us?
•Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

•Now each I-format instruction has only a 16-
bit immediate.

•Wouldn’t it be nice if the assembler
would this for us automatically?

- If number too big, then just automatically
replace addi with lui, ori, add

CS61C L11 MIPS Instruction Rep III, Running a Program I (14) Garcia, Fall 2005 © UCB

True Assembly Language (1/3)
•Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
language instruction, but into other MIPS
instrucitons
•What happens with pseudoinstructions?
• They’re broken up by the assembler into
several “real” MIPS instructions.
•But what is a “real” MIPS instruction?
Answer in a few slides

•First some examples

CS61C L11 MIPS Instruction Rep III, Running a Program I (15) Garcia, Fall 2005 © UCB

Example Pseudoinstructions

•Register Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

•Load Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS61C L11 MIPS Instruction Rep III, Running a Program I (16) Garcia, Fall 2005 © UCB

True Assembly Language (2/3)
•Problem:
•When breaking up a pseudoinstruction, the
assembler may need to use an extra reg.
• If it uses any regular register, it’ll overwrite
whatever the program has put into it.

•Solution:
•Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.
•Since the assembler may use this at any
time, it’s not safe to code with it.

CS61C L11 MIPS Instruction Rep III, Running a Program I (17) Garcia, Fall 2005 © UCB

Example Pseudoinstructions

•Rotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

• “No OPeration” instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0

CS61C L11 MIPS Instruction Rep III, Running a Program I (18) Garcia, Fall 2005 © UCB

Example Pseudoinstructions
•Wrong operation for operand

addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu reg,reg,$at

•How do we avoid confusion about whether
we are talking about MIPS assembler with
or without pseudoinstructions?

CS61C L11 MIPS Instruction Rep III, Running a Program I (19) Garcia, Fall 2005 © UCB

True Assembly Language (3/3)
•MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions
•TAL (True Assembly Language): set of
instructions that can actually get
translated into a single machine
language instruction (32-bit binary string)
•A program must be converted from MAL
into TAL before translation into 1s & 0s.

CS61C L11 MIPS Instruction Rep III, Running a Program I (20) Garcia, Fall 2005 © UCB

Questions on Pseudoinstructions

•Question:
•How does MIPS recognize pseudo-
instructions?

•Answer:
• It looks for officially defined pseudo-
instructions, such as ror and move
• It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully

CS61C L11 MIPS Instruction Rep III, Running a Program I (21) Garcia, Fall 2005 © UCB

Rewrite TAL as MAL

•TAL:
or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

•This time convert to MAL
• It’s OK for this exercise to
make up MAL instructions

CS61C L11 MIPS Instruction Rep III, Running a Program I (22) Garcia, Fall 2005 © UCB

Rewrite TAL as MAL (Answer)
•TAL: or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

•MAL:
li $v0,0

Loop: bge $zero,$a1,Exit
add $v0,$v0,$a0
decr $a1, 1
j Loop

Exit:

CS61C L11 MIPS Instruction Rep III, Running a Program I (23) Garcia, Fall 2005 © UCB

Peer Instruction

1. Converting float -> int -> float
produces same float number

2. Converting int -> float -> int produces
same int number

3. FP add is associative:
(x+y)+z = x+(y+z)

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L11 MIPS Instruction Rep III, Running a Program I (24) Garcia, Fall 2005 © UCB

Peer Instruction Answer
1. Converting a float -> int -> float

produces same float number

2. Converting a int -> float -> int
produces same int number

3. FP add is associative (x+y)+z = x+(y+z)
1. 3.14 -> 3 -> 3
2. 32 bits for signed int,

but 24 for FP mantissa?

F A L S E
F A L S E
F A L S E

3. x = biggest pos #,
y = -x, z = 1 (x != inf)

1 0

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L11 MIPS Instruction Rep III, Running a Program I (25) Garcia, Fall 2005 © UCB

Peer Instruction

Which of the instructions below are MAL
and which are TAL?
A. addi $t0, $t1, 40000
B. beq $s0, 10, Exit

C. sub $t0, $t1, 1

 ABC
1: MMM
2: MMT
3: MTM
4: MTT
5: TMM
6: TMT
7: TTM
8: TTT

CS61C L11 MIPS Instruction Rep III, Running a Program I (26) Garcia, Fall 2005 © UCB

Peer Instruction Answer
•Which of the instructions below are
MAL and which are TAL?

i. addi $t0, $t1, 40000
ii. beq $s0, 10, Exit
iii. sub $t0, $t1, 1

40,000 > +32,767 =>lui,ori

sub: both must be registers;
even if it were subi,
there is no subi in TAL;
generates addi $t0,$t1, -1

Beq: both must be registers
Exit: if > 215, then MAL

 ABC
1: MMM
2: MMT
3: MTM
4: MTT
5: TMM
6: TMT
7: TTM
8: TTT

CS61C L11 MIPS Instruction Rep III, Running a Program I (27) Garcia, Fall 2005 © UCB

Upcoming Calendar

Intro to
SDS I

Running
Program II

Wed

SDSMidterm @
5:30-8:30pm

Here!
(155 Dwin)

#8
Midterm

week
(review
Sun @

2pm 10
Evans)

Running
Program

MIPS III
Running

Program I

#7
This

week

Thurs LabMonWeek #

CS61C L11 MIPS Instruction Rep III, Running a Program I (28) Garcia, Fall 2005 © UCB

In semi-conclusion…

•Disassembly is simple and starts by
decoding opcode field.
•Be creative, efficient when authoring C

•Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)
•Only TAL can be converted to raw binary
•Assembler’s job to do conversion
•Assembler uses reserved register $at
•MAL makes it much easier to write MIPS

CS61C L11 MIPS Instruction Rep III, Running a Program I (29) Garcia, Fall 2005 © UCB

Overview

• Interpretation vs Translation
•Translating C Programs
•Compiler
•Assembler (next time)
• Linker (next time)
• Loader (next time)

•An Example (next time)

CS61C L11 MIPS Instruction Rep III, Running a Program I (30) Garcia, Fall 2005 © UCB

Language Continuum

• In general, we interpret a high level
language if efficiency is not critical or
translated to a lower level language to
improve performance

Easy to program
Inefficient to interpret

Efficient
Difficult to program

Scheme
Java
C++ C Assembly machine language

Java bytecode

CS61C L11 MIPS Instruction Rep III, Running a Program I (31) Garcia, Fall 2005 © UCB

Interpretation vs Translation

•How do we run a program written in a
source language?
• Interpreter: Directly executes a
program in the source language
•Translator: Converts a program from
the source language to an equivalent
program in another language
•For example, consider a Scheme
program foo.scm

CS61C L11 MIPS Instruction Rep III, Running a Program I (32) Garcia, Fall 2005 © UCB

Interpretation

Scheme program: foo.scm

Scheme Interpreter

CS61C L11 MIPS Instruction Rep III, Running a Program I (33) Garcia, Fall 2005 © UCB

Translation

Scheme program: foo.scm

Hardware

Scheme Compiler
(+ assembler & linker)

Executable(mach lang pgm): a.out

°Scheme Compiler is a translator from
Scheme to machine language.

CS61C L11 MIPS Instruction Rep III, Running a Program I (34) Garcia, Fall 2005 © UCB

Interpretation

•Any good reason to interpret machine
language in software?
•SPIM – useful for learning / debugging
•Apple Macintosh conversion
•Switched from Motorola 680x0
instruction architecture to PowerPC.
•Could require all programs to be re-
translated from high level language
• Instead, let executables contain old
and/or new machine code, interpret old
code in software if necessary

CS61C L11 MIPS Instruction Rep III, Running a Program I (35) Garcia, Fall 2005 © UCB

Interpretation vs. Translation?
•Easier to write interpreter
• Interpreter closer to high-level, so gives
better error messages (e.g., SPIM)
• Translator reaction: add extra information
to help debugging (line numbers, names)

• Interpreter slower (10x?) but code is
smaller (1.5X to 2X?)
• Interpreter provides instruction set
independence: run on any machine
•Apple switched to PowerPC. Instead of
retranslating all SW, let executables
contain old and/or new machine code,
interpret old code in software if necessary

CS61C L11 MIPS Instruction Rep III, Running a Program I (36) Garcia, Fall 2005 © UCB

Steps to Starting a Program
C program: foo.c

Compiler
Assembly program: foo.s

Assembler

Linker

Executable(mach lang pgm): a.out
Loader

Memory

Object(mach lang module): foo.o

lib.o

CS61C L11 MIPS Instruction Rep III, Running a Program I (37) Garcia, Fall 2005 © UCB

Compiler

• Input: High-Level Language Code
(e.g., C, Java such as foo.c)
•Output: Assembly Language Code
(e.g., foo.s for MIPS)
•Note: Output may contain
pseudoinstructions
•Pseudoinstructions: instructions that
assembler understands but not in
machine. E.g.,
• mov $s1,$s2 ⇒ or $s1,$s2,$zero

CS61C L11 MIPS Instruction Rep III, Running a Program I (38) Garcia, Fall 2005 © UCB

And in conclusion...
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

