inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture \#11 - Floating Point II

2005-10-05

There is one handout today at the front and back of the room!

Lecturer PSOE, new dad Dan Garcia

www . cs . berkeley . edu/~ddgarcia Free 802.11 bg in SF! \Rightarrow Google, SBC and others are all bidding to offer all of SF free wireless access! They plan to offer many location-based services. Cool!

www. nytimes. com/2005/10/01/technology/01google.html

Review

- Floating Point numbers approximate values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
- Every desktop or server computer sold since ~1997 follows these conventions
- Summary (single precision):
$3130 \quad 2322$
S| Exponent \quad Significand

1 bit 8 bits 23 bits
$\cdot(-1)^{\mathrm{S}} \times(1+$ Significand $) \times 2^{\text {(Exponent-127) }}$

- Double precision identical, bias of 1023

"Father" of the Floating point standard

IEEE Standard 754 for Binary Floating-Point Arithmetic.

Prof. Kahan
www.cs.berkeley.edu/~wkahan/
.../ieee754status/754story.html

Understanding the Significand (1/2)

- Method 1 (Fractions):
- In decimal: $0.340_{10}=>340_{10} / 1000_{10}$ $=>34_{10} / 100_{10}$
- In binary: $0.110_{2}=>110_{2} / 1000_{2}=6_{10} / 8_{10}$

$$
\Rightarrow 11_{2} / 100_{2}=3_{10} / 4_{10}
$$

- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Understanding the Significand (2/2)

- Method 2 (Place Values):
- Convert from scientific notation
- In decimal: $1.6732=\left(1 \times 10^{0}\right)+\left(6 \times 10^{-1}\right)+$ $\left(7 \times 10^{-2}\right)+\left(3 \times 10^{-3}\right)+\left(2 \times 10^{-4}\right)$
- In binary: $\quad 1.1001=\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+$ $\left(0 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers

Example: Converting Binary FP to Decimal

0	01101000	10101010100	00110100	0010

- Sign: 0 => positive
- Exponent:
- $01101000_{\text {two }}=104_{\text {ten }}$
- Bias adjustment: $104-127=-23$
- Significand:

$$
\begin{aligned}
& \cdot 1+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4}+1 \times 2^{-5}+\ldots \\
& =1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22} \\
& =1.0_{\text {ten }}+0.666115_{\text {ten }}
\end{aligned}
$$

-Represents: $1.666115_{\text {ten }}{ }^{*} 2^{-23} \sim 1.986 * 10^{-7}$
(about 2/10,000,000)

Converting Decimal to FP (1/3)

- Simple Case: If denominator is an exponent of $2(2,4,8,16$, etc.), then it's easy.
- Show MIPS representation of $\mathbf{- 0 . 7 5}$
- $-0.75=-3 / 4$
$--11_{\mathrm{two}} / 100_{\mathrm{two}}=-0.11_{\mathrm{two}}$
- Normalized to -1.1 $1_{\text {two }} \times \mathbf{2}^{-1}$
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$
$\cdot(-1)^{1} \times(1+.1000000 \ldots 0000) \times 2^{(126-127)}$
1|01111110|10000000000000000000000

Converting Decimal to FP (2/3)

- Not So Simple Case: If denominator is not an exponent of 2.
- Then we can't represent number precisely, but that's why we have so many bits in significand: for precision
- Once we have significand, normalizing a number to get the exponent is easy.
- So how do we get the significand of a neverending number?

Converting Decimal to FP (3/3)

- Fact: All rational numbers have a repeating pattern when written out in decimal.
- Fact: This still applies in binary.
-To finish conversion:
- Write out binary number with repeating pattern.
- Cut it off after correct number of bits (different for single v . double precision).
- Derive Sign, Exponent and Significand fields.

Example: Representing 1/3 in MIPS

-1/3
$=0.33333 \ldots_{10}$
$=0.25+0.0625+0.015625+0.00390625+\ldots$
$=1 / 4+1 / 16+1 / 64+1 / 256+\ldots$
$=2^{-2}+2^{-4}+2^{-6}+2^{-8}+\ldots$
$=0.0101010101 \ldots{ }^{*} 2^{0}$
$=1.0101010101 \ldots{ }^{*}{ }^{*} 2^{-2}$

- Sign: 0
- Exponent $=-2+127=125=01111101$
- Significand = 0101010101...

Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.
-Why?
- OK to do further computations with ∞ E.g., X/O > Y may be a valid comparison
- Ask math majors
-IEEE 754 represents $\pm \infty$
- Most positive exponent reserved for ∞
- Significands all zeroes

Representation for 0

-Represent 0?

- exponent all zeroes
- significand all zeroes too
- What about sign?
-+0: 0 0000000000000000000000000000000
--0: 10000000000000000000000000000000
-Why two zeroes?
- Helps in some limit comparisons
- Ask math majors

Special Numbers

- What have we defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	nonzero	???
$1-254$	anything	$+/-$ fl. pt. \#
255	0	$+/-\infty$
255	nonzero	???

- Professor Kahan had clever ideas; "Waste not, want not"
- Exp=0,255 \& Sig!=0 ...

Representation for Not a Number

-What is sqrt (-4.0) or $0 / 0$?

- If ∞ not an error, these shouldn't be either.
- Called Not a Number (NaN)
- Exponent = 255, Significand nonzero
- Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: $\mathrm{op}(\mathrm{NaN}, \mathrm{X})=\mathrm{NaN}$

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
- Smallest representable pos num:

$$
a=1.0 \ldots 2^{*} 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:

$$
\begin{array}{ll}
b=1.000 \ldots \ldots 1_{2} * 2^{-126}=2^{-126}+2^{-149} \\
a-0=2^{-126} & \text { Normalization } \\
b-a=2^{-149} & \text { and implicit 1 } \\
& \text { is to blame! }
\end{array}
$$

Representation for Denorms (2/2)

-Solution:

- We still haven't used Exponent = 0, Significand nonzero
- Denormalized number: no leading 1, implicit exponent =-126.
- Smallest representable pos num:

$$
a=2^{-149}
$$

- Second smallest representable pos num:

$$
b=2^{-148}
$$

Overview

- Reserve exponents, significands: Exponent Significand Object

0
0
1-254
255
255

0
nonzero
anything
0
nonzero

0
Denorm
+/- fl. pt. \#
$\stackrel{+/-\infty}{\mathrm{NaN}}$

Administrivia...Midterm in 12 days!

- Midterm HERE Mon 2005-10-17 @ 5:30-8:30pm
- Conflicts/DSP? Email Head TA Jeremy
- How should we study for the midterm?
- Form study groups -- don't prepare in isolation!
- Attend the review session (2005-10-16 @ 2pm in 10 Evans)
- Look over HW, Labs, Projects
- Write up your 1-page study sheet--handwritten
- Go over old exams - HKN office has put them online (link from 61C home page)
- If you have trouble remembering whether it's +127 or -127
- remember the exponent bits are unsigned and have $\max =255$, min=0, so what do we have to do?

Peer Instruction

- Let $\mathrm{f}(1,2)=$ \# of floats between 1 and 2
- Let $f(2,3)=$ \# of floats between 2 and 3

$$
\begin{aligned}
& 1: f(1,2)<f(2,3) \\
& 2: f(1,2)=f(2,3) \\
& 3: f(1,2)>f(2,3)
\end{aligned}
$$

Peer Instruction Answer

- Let $\mathrm{f}(1,2)=$ \# of floats between 1 and 2
- Let $f(2,3)=$ \# of floats between 2 and 3

$$
\begin{aligned}
& \text { 1: } f(1,2)<f(2,3) \\
& \text { 2: } f(1,2)=f(2,3) \\
& \text { 3: } f(1,2)>f(2,3)
\end{aligned}
$$

$$
\begin{aligned}
& 0
\end{aligned}
$$

Rounding

- Math on real numbers \Rightarrow we worry about rounding to fit result in the significant field.
- FP hardware carries 2 extra bits of precision, and rounds for proper value
- Rounding occurs when converting...
- double to single precision
- floating point \# to an integer

IEEE Four Rounding Modes

-Round towards $+\infty$

- ALWAYS round "up": $2.1 \Rightarrow 3,-2.1 \Rightarrow-2$
- Round towards - ∞
- ALWAYS round "down": $1.9 \Rightarrow 1,-1.9 \Rightarrow-2$
- Round towards 0 (I.e., truncate)
- Just drop the last bits
-Round to (nearest) even (default)
- Normal rounding, almost: $2.5 \Rightarrow 2,3.5 \Rightarrow 4$
- Like you learned in grade school
- Insures fairness on calculation
- Half the time we round up, other half down

Integer Multiplication (1/3)

- Paper and pencil example (unsigned):

Multiplicand	1000
Multiplier	8
$\frac{x 1001}{1000}$	9
0000	
0000	
+1000	
01001000	

- \mathbf{m} bits $\mathbf{x} \mathbf{n}$ bits $=\mathbf{m}+\mathbf{n}$ bit product

Integer Multiplication (2/3)

- In MIPS, we multiply registers, so:
-32-bit value $\times 32$-bit value $=64$-bit value
-Syntax of Multiplication (signed):
- mult register1, register2
- Multiplies 32-bit values in those registers \& puts 64-bit product in special result regs:
- puts product upper half in hi, lower half in lo
- hi and lo are 2 registers separate from the 32 general purpose registers
- Use mfhi register \& mflo register to move from hi, lo to another register

Integer Multiplication (3/3)

-Example:

- in C: a = b * c;
- in MIPS:
- let b be \$s2; let c be \$s3; and let a be \$s0 and $\$ s 1$ (since it may be up to 64 bits)
mult \$s2,\$s3 mfhi \$s0
mflo \$s1
- Note: Often, we only care about the lower half of the product.

Integer Division (1/2)

- Paper and pencil example (unsigned):

$$
\text { Divisor } 1000 \frac{1001}{\frac{1001010}{1000}} \begin{gathered}
\text { Quotient } \\
\text { Dividend } \\
10 \\
101 \\
1010 \\
-\frac{1000}{10} \text { Remainder } \\
\text { (or Modulo result) }
\end{gathered}
$$

- Dividend = Quotient x Divisor + Remainder

Integer Division (2/2)

- Syntax of Division (signed):
- div register1, register2
- Divides 32-bit register 1 by 32-bit register 2:
- puts remainder of division in hi, quotient in lo
- Implements C division (/) and modulo (\%)
- Example in C: a = c / d;

$$
\mathrm{b}=\mathrm{c} \% \mathrm{~d} ;
$$

- in MIPS: $a \leftrightarrow \$ s 0 ; b \leftrightarrow \$ s 1 ; c \leftrightarrow \$ s 2 ; d \leftrightarrow \$ s 3$

$$
\begin{array}{ll}
\text { div } \$ s 2, \$ s 3 & \text { \# lo=c/d, hi=c\%d } \\
\text { mflo } \$ s 0 & \text { \# get quotient } \\
\text { mfhi } \$ s 1 & \text { \# get remainder }
\end{array}
$$

Unsigned Instructions \& Overflow

- MIPS also has versions of mult, div for unsigned operands:
multu
divu
- Determines whether or not the product and quotient are changed if the operands are signed or unsigned.
- MIPS does not check overflow on ANY signed/unsigned multiply, divide instr
- Up to the software to check hi

FP Addition \& Subtraction

- Much more difficult than with integers (can't just add significands)
- How do we do it?
- De-normalize to match larger exponent
- Add significands to get resulting one
- Normalize (\& check for under/overflow)
- Round if needed (may need to renormalize)
- If signs \neq, do a subtract. (Subtract similar)
- If signs \neq for add (or = for sub), what's ans sign?
- Question: How do we integrate this into the integer arithmetic unit? [Answer: We don't!]

MIPS Floating Point Architecture (1/4)

-Separate floating point instructions:

- Single Precision: add.s, sub.s, mul.s, div.s
- Double Precision: add.d, sub.d, mul.d, div.d
-These are far more complicated than their integer counterparts
- Can take much longer to execute

MIPS Floating Point Architecture (2/4)

- Problems:
- Inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change FP \Leftrightarrow int within a program.
- Only 1 type of instruction will be used on it.
- Some programs do no FP calculations
- It takes lots of hardware relative to integers to do FP fast

MIPS Floating Point Architecture (3/4)

- 1990 Solution: Make a completely separate chip that handles only FP.
- Coprocessor 1: FP chip
- contains 32 32-bit registers: $\$ \mathrm{f0}$, $\$ \mathrm{f1}, \ldots$
- most of the registers specified in .s and .d instruction refer to this set
- separate load and store: 1 wc1 and swc1 ("load word coprocessor 1", "store ...")
- Double Precision: by convention, even/odd pair contain one DP FP number: $\$ f 0 / \$ f 1, \$ f 2 / \$ f 3, \ldots, \$ f 30 / \$ f 31$
- Even register is the name

MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips:
- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
- Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
-mfc0, mtc0, mfc1, mtc1, etc.
- Appendix contains many more FP ops

Peer Instruction

1. Converting float $->$ int $->$ float produces same float number
2. Converting int $->$ float $->$ int produces same int number
3. FP add is associative:
$(x+y)+z=x+(y+z)$

Peer Instruction Answer

"And in conclusion..."

-Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	$\underline{\text { nonzero }}$	Denorm
$1-254$	anything	$+/-\mathrm{fl}$ pt. \#
255	$\underline{0}$	$\underline{+/-\infty}$
255	$\underline{\text { nonzero }}$	$\underline{N a N}$

- Integer mult, div uses hi, lo regs -mfhi and mflo copies out.
- Four rounding modes (to even default)
- MIPS FL ops complicated, expensive

