
CS61C L11 Floating Point II (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures
Lecture #11 – Floating Point II

2005-10-05 There is one handout
today at the front and

back of the room!

Free 802.11bg in SF! ⇒
Google, SBC and others

 are all bidding to offer all of SF free
wireless access! They plan to offer

many location-based services. Cool!
www.nytimes.com/2005/10/01/technology/01google.html

CS61C L11 Floating Point II (2) Garcia, Fall 2005 © UCB

Review
•Floating Point numbers approximate
values that we want to use.
• IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers
•Every desktop or server computer sold since
~1997 follows these conventions

•Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

•Double precision identical, bias of 1023

CS61C L11 Floating Point II (3) Garcia, Fall 2005 © UCB

“Father” of the Floating point standard

IEEE Standard
754 for Binary
Floating-Point

Arithmetic.

www.cs.berkeley.edu/~wkahan/
…/ieee754status/754story.html

Prof. Kahan
1989

ACM Turing
Award Winner!

CS61C L11 Floating Point II (4) Garcia, Fall 2005 © UCB

Understanding the Significand (1/2)

•Method 1 (Fractions):
• In decimal: 0.34010 => 34010/100010

 => 3410/10010
• In binary: 0.1102 => 1102/10002 = 610/810

 => 112/1002 = 310/410

•Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better

CS61C L11 Floating Point II (5) Garcia, Fall 2005 © UCB

Understanding the Significand (2/2)

•Method 2 (Place Values):
•Convert from scientific notation
• In decimal: 1.6732 = (1x100) + (6x10-1) +
(7x10-2) + (3x10-3) + (2x10-4)
• In binary: 1.1001 = (1x20) + (1x2-1) +
(0x2-2) + (0x2-3) + (1x2-4)
• Interpretation of value in each position
extends beyond the decimal/binary point
•Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers

CS61C L11 Floating Point II (6) Garcia, Fall 2005 © UCB

Example: Converting Binary FP to Decimal

•Sign: 0 => positive
•Exponent:
• 0110 1000two = 104ten

•Bias adjustment: 104 - 127 = -23

•Significand:
• 1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22

= 1.0ten + 0.666115ten

0 0110 1000 101 0101 0100 0011 0100 0010

•Represents: 1.666115ten*2-23 ~ 1.986*10-7

 (about 2/10,000,000)

CS61C L11 Floating Point II (7) Garcia, Fall 2005 © UCB

Converting Decimal to FP (1/3)
•Simple Case: If denominator is an
exponent of 2 (2, 4, 8, 16, etc.), then
it’s easy.
•Show MIPS representation of -0.75
• -0.75 = -3/4
• -11two/100two = -0.11two
•Normalized to -1.1two x 2-1

• (-1)S x (1 + Significand) x 2(Exponent-127)

• (-1)1 x (1 + .100 0000 ... 0000) x 2(126-127)

1 0111 1110 100 0000 0000 0000 0000 0000

CS61C L11 Floating Point II (8) Garcia, Fall 2005 © UCB

Converting Decimal to FP (2/3)

•Not So Simple Case: If denominator is
not an exponent of 2.
• Then we can’t represent number precisely,
but that’s why we have so many bits in
significand: for precision
•Once we have significand, normalizing a
number to get the exponent is easy.
•So how do we get the significand of a
neverending number?

CS61C L11 Floating Point II (9) Garcia, Fall 2005 © UCB

Converting Decimal to FP (3/3)

•Fact: All rational numbers have a
repeating pattern when written out in
decimal.
•Fact: This still applies in binary.
•To finish conversion:
•Write out binary number with repeating
pattern.
•Cut it off after correct number of bits
(different for single v. double precision).
•Derive Sign, Exponent and Significand
fields.

CS61C L11 Floating Point II (10) Garcia, Fall 2005 © UCB

Example: Representing 1/3 in MIPS
•1/3

= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + …
= 1/4 + 1/16 + 1/64 + 1/256 + …
= 2-2 + 2-4 + 2-6 + 2-8 + …
= 0.0101010101… 2 * 20

= 1.0101010101… 2 * 2-2

•Sign: 0
•Exponent = -2 + 127 = 125 = 01111101
•Significand = 0101010101…

0 0111 1101 0101 0101 0101 0101 0101 010

CS61C L11 Floating Point II (11) Garcia, Fall 2005 © UCB

Representation for ± ∞

• In FP, divide by 0 should produce ± ∞,
not overflow.
•Why?
•OK to do further computations with ∞
E.g., X/0 > Y may be a valid comparison
•Ask math majors

• IEEE 754 represents ± ∞
•Most positive exponent reserved for ∞
•Significands all zeroes

CS61C L11 Floating Point II (12) Garcia, Fall 2005 © UCB

Representation for 0
•Represent 0?
• exponent all zeroes
• significand all zeroes too
•What about sign?
•+0: 0 00000000 00000000000000000000000

•-0: 1 00000000 00000000000000000000000

•Why two zeroes?
•Helps in some limit comparisons
•Ask math majors

CS61C L11 Floating Point II (13) Garcia, Fall 2005 © UCB

Special Numbers
•What have we defined so far?
(Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero ???

•Professor Kahan had clever ideas;
“Waste not, want not”
•Exp=0,255 & Sig!=0 …

CS61C L11 Floating Point II (14) Garcia, Fall 2005 © UCB

Representation for Not a Number

•What is sqrt(-4.0)or 0/0?
• If ∞ not an error, these shouldn’t be either.
•Called Not a Number (NaN)
•Exponent = 255, Significand nonzero

•Why is this useful?
•Hope NaNs help with debugging?
• They contaminate: op(NaN, X) = NaN

CS61C L11 Floating Point II (15) Garcia, Fall 2005 © UCB

Representation for Denorms (1/2)
•Problem: There’s a gap among
representable FP numbers around 0
•Smallest representable pos num:

a = 1.0… 2 * 2-126 = 2-126

•Second smallest representable pos num:
b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0 +-

Gaps!

Normalization
and implicit 1
is to blame!

CS61C L11 Floating Point II (16) Garcia, Fall 2005 © UCB

Representation for Denorms (2/2)

•Solution:
•We still haven’t used Exponent = 0,
Significand nonzero
•Denormalized number: no leading 1,
implicit exponent = -126.
•Smallest representable pos num:

a = 2-149

•Second smallest representable pos num:
b = 2-148

0 +-

CS61C L11 Floating Point II (17) Garcia, Fall 2005 © UCB

Overview

•Reserve exponents, significands:
Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

CS61C L11 Floating Point II (18) Garcia, Fall 2005 © UCB

Administrivia…Midterm in 12 days!
•Midterm HERE Mon 2005-10-17 @ 5:30-8:30pm

• Conflicts/DSP? Email Head TA Jeremy

• How should we study for the midterm?
• Form study groups -- don’t prepare in isolation!
• Attend the review session

(2005-10-16 @ 2pm in 10 Evans)
• Look over HW, Labs, Projects
• Write up your 1-page study sheet--handwritten
• Go over old exams – HKN office has put them

online (link from 61C home page)

• If you have trouble remembering whether it’s
+127 or –127
• remember the exponent bits are unsigned and

have max=255, min=0, so what do we have to do?

CS61C L11 Floating Point II (19) Garcia, Fall 2005 © UCB

Peer Instruction

• Let f(1,2) = # of floats between 1 and 2
• Let f(2,3) = # of floats between 2 and 3

1: f(1,2) < f(2,3)
2: f(1,2) = f(2,3)
3: f(1,2) > f(2,3)

CS61C L11 Floating Point II (21) Garcia, Fall 2005 © UCB

Rounding

•Math on real numbers ⇒ we worry
about rounding to fit result in the
significant field.
•FP hardware carries 2 extra bits of
precision, and rounds for proper value
•Rounding occurs when converting…
• double to single precision
• floating point # to an integer

CS61C L11 Floating Point II (22) Garcia, Fall 2005 © UCB

IEEE Four Rounding Modes
•Round towards + ∞
•ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2

•Round towards - ∞
•ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2

•Round towards 0 (I.e., truncate)
• Just drop the last bits

•Round to (nearest) even (default)
•Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
• Like you learned in grade school
• Insures fairness on calculation
•Half the time we round up, other half down

CS61C L11 Floating Point II (23) Garcia, Fall 2005 © UCB

Integer Multiplication (1/3)
•Paper and pencil example (unsigned):

Multiplicand 1000 8
Multiplier x1001 9

1000
 0000
 0000
+1000
01001000

•m bits x n bits = m + n bit product

CS61C L11 Floating Point II (24) Garcia, Fall 2005 © UCB

Integer Multiplication (2/3)
• In MIPS, we multiply registers, so:
• 32-bit value x 32-bit value = 64-bit value

•Syntax of Multiplication (signed):
• mult register1, register2
•Multiplies 32-bit values in those registers &
puts 64-bit product in special result regs:
- puts product upper half in hi, lower half in lo

• hi and lo are 2 registers separate from the
32 general purpose registers
•Use mfhi register & mflo register to
move from hi, lo to another register

CS61C L11 Floating Point II (25) Garcia, Fall 2005 © UCB

Integer Multiplication (3/3)
•Example:
• in C: a = b * c;

• in MIPS:
- let b be $s2; let c be $s3; and let a be $s0

and $s1 (since it may be up to 64 bits)
mult $s2,$s3 # b*c
mfhi $s0 # upper half of
 # product into $s0

mflo $s1 # lower half of
 # product into $s1

•Note: Often, we only care about the
lower half of the product.

CS61C L11 Floating Point II (26) Garcia, Fall 2005 © UCB

Integer Division (1/2)

•Paper and pencil example (unsigned):
 1001 Quotient

Divisor 1000|1001010 Dividend
 -1000

 10
 101
 1010
 -1000

10 Remainder
(or Modulo result)

• Dividend = Quotient x Divisor + Remainder

CS61C L11 Floating Point II (27) Garcia, Fall 2005 © UCB

Integer Division (2/2)

• Syntax of Division (signed):
•div register1, register2
• Divides 32-bit register 1 by 32-bit register 2:
• puts remainder of division in hi, quotient in lo

• Implements C division (/) and modulo (%)
• Example in C: a = c / d;

b = c % d;

• in MIPS: a↔$s0;b↔$s1;c↔$s2;d↔$s3

div $s2,$s3 # lo=c/d, hi=c%d
mflo $s0 # get quotient
mfhi $s1 # get remainder

CS61C L11 Floating Point II (28) Garcia, Fall 2005 © UCB

Unsigned Instructions & Overflow

•MIPS also has versions of mult, div
for unsigned operands:

multu

divu
•Determines whether or not the product
and quotient are changed if the operands
are signed or unsigned.

•MIPS does not check overflow on ANY
signed/unsigned multiply, divide instr
•Up to the software to check hi

CS61C L11 Floating Point II (29) Garcia, Fall 2005 © UCB

FP Addition & Subtraction

•Much more difficult than with integers
(can’t just add significands)
• How do we do it?

• De-normalize to match larger exponent
• Add significands to get resulting one
• Normalize (& check for under/overflow)
• Round if needed (may need to renormalize)

• If signs ≠ , do a subtract. (Subtract similar)
• If signs ≠ for add (or = for sub), what’s ans

sign?

•Question: How do we integrate this into the
integer arithmetic unit? [Answer: We don’t!]

CS61C L11 Floating Point II (30) Garcia, Fall 2005 © UCB

MIPS Floating Point Architecture (1/4)
•Separate floating point instructions:
•Single Precision:

add.s, sub.s, mul.s, div.s

•Double Precision:
add.d, sub.d, mul.d, div.d

•These are far more complicated than
their integer counterparts
•Can take much longer to execute

CS61C L11 Floating Point II (31) Garcia, Fall 2005 © UCB

MIPS Floating Point Architecture (2/4)

•Problems:
• Inefficient to have different instructions
take vastly differing amounts of time.
•Generally, a particular piece of data will
not change FP ⇔ int within a program.
- Only 1 type of instruction will be used on it.

•Some programs do no FP calculations
• It takes lots of hardware relative to
integers to do FP fast

CS61C L11 Floating Point II (32) Garcia, Fall 2005 © UCB

MIPS Floating Point Architecture (3/4)

•1990 Solution: Make a completely
separate chip that handles only FP.
•Coprocessor 1: FP chip
• contains 32 32-bit registers: $f0, $f1, …
•most of the registers specified in .s and
.d instruction refer to this set
• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)
•Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31
- Even register is the name

CS61C L11 Floating Point II (33) Garcia, Fall 2005 © UCB

MIPS Floating Point Architecture (4/4)
•1990 Computer actually contains
multiple separate chips:
•Processor: handles all the normal stuff
•Coprocessor 1: handles FP and only FP;
•more coprocessors?… Yes, later
• Today, FP coprocessor integrated with
CPU, or cheap chips may leave out FP HW

• Instructions to move data between main
processor and coprocessors:
•mfc0, mtc0, mfc1, mtc1, etc.

•Appendix contains many more FP ops

CS61C L11 Floating Point II (34) Garcia, Fall 2005 © UCB

Peer Instruction

1. Converting float -> int -> float
produces same float number

2. Converting int -> float -> int produces
same int number

3. FP add is associative:
(x+y)+z = x+(y+z)

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L11 Floating Point II (36) Garcia, Fall 2005 © UCB

“And in conclusion…”
•Reserve exponents, significands:

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

• Integer mult, div uses hi, lo regs
•mfhi and mflo copies out.

•Four rounding modes (to even default)
•MIPS FL ops complicated, expensive

