
CS61C L10 MIPS Instruction Representation II, Floating Point I (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #10 – Instruction Representation II,
Floating Point I

2005-10-03
There is one handout
today at the front and

back of the room!

#9 bears win again! ⇒
Marshawn Lynch ran

 for 107 yds and a TD & Ayoob went
14-20. We won 28-0 and have

outscored ‘zona 66-0 the last 2 yrs!
We visit #16 UCLA next week.

calbears.collegesports.com/sports/m-footbl/recaps/100105aaa.html
CS61C L10 MIPS Instruction Representation II, Floating Point I (2) Garcia, Fall 2005 © UCB

Review…
• Logical and Shift Instructions

• Operate on individual bits (arithmetic operate on entire word)
• Use to isolate fields, either by masking or by shifting back & forth
• Use shift left logical, sll,for multiplication by powers of 2
• Use shift right arithmetic, sra,for division by powers of 2

• Simplifying MIPS: Define instructions to be same size as
data word (one word) so that they can use the same
memory (compiler can use lw and sw).
• Computer actually stores programs as a series of these

32-bit numbers.
• MIPS Machine Language Instruction:

32 bits representing a single instruction

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode

CS61C L10 MIPS Instruction Representation II, Floating Point I (3) Garcia, Fall 2005 © UCB

I-Format Problems (0/3)

•Problem 0: Unsigned # sign-extended?
•addiu, sltiu, sign-extends immediates to
32 bits. Thus, # is a “signed” integer.

•Rationale
•addiu so that can add w/out overflow
- See K&R pp. 230, 305

•sltiu suffers so that we can have ez HW
- Does this mean we’ll get wrong answers?
- Nope, it means assembler has to handle any

unsigned immediate 215 ≤ n < 216 (I.e., with a 1
in the 15th bit and 0s in the upper 2 bytes) as it
does for numbers that are too large. ⇒

CS61C L10 MIPS Instruction Representation II, Floating Point I (4) Garcia, Fall 2005 © UCB

I-Format Problems (1/3)

•Problem 1:
•Chances are that addi, lw, sw and slti
will use immediates small enough to fit in
the immediate field.
•…but what if it’s too big?
•We need a way to deal with a 32-bit
immediate in any I-format instruction.

CS61C L10 MIPS Instruction Representation II, Floating Point I (5) Garcia, Fall 2005 © UCB

I-Format Problems (2/3)
•Solution to Problem 1:
•Handle it in software + new instruction
•Don’t change the current instructions:
instead, add a new instruction to help out

•New instruction:
lui register, immediate

• stands for Load Upper Immediate
• takes 16-bit immediate and puts these bits
in the upper half (high order half) of the
specified register
• sets lower half to 0s

CS61C L10 MIPS Instruction Representation II, Floating Point I (6) Garcia, Fall 2005 © UCB

I-Format Problems (3/3)
•Solution to Problem 1 (continued):
•So how does lui help us?
•Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

•Now each I-format instruction has only a 16-
bit immediate.
•Wouldn’t it be nice if the assembler would
this for us automatically? (later)

CS61C L10 MIPS Instruction Representation II, Floating Point I (7) Garcia, Fall 2005 © UCB

Branches: PC-Relative Addressing (1/5)
•Use I-Format
opcode rs rt immediate

•opcode specifies beq v. bne
•rs and rt specify registers to compare
•What can immediate specify?

•Immediate is only 16 bits
•PC (Program Counter) has byte address of
current instruction being executed;
32-bit pointer to memory
•So immediate cannot specify entire
address to branch to.

CS61C L10 MIPS Instruction Representation II, Floating Point I (8) Garcia, Fall 2005 © UCB

Branches: PC-Relative Addressing (2/5)
•How do we usually use branches?
•Answer: if-else, while, for
• Loops are generally small: typically up to
50 instructions
• Function calls and unconditional jumps are
done using jump instructions (j and jal),
not the branches.

•Conclusion: may want to branch to
anywhere in memory, but a branch often
changes PC by a small amount

CS61C L10 MIPS Instruction Representation II, Floating Point I (9) Garcia, Fall 2005 © UCB

Branches: PC-Relative Addressing (3/5)

•Solution to branches in a 32-bit
instruction: PC-Relative Addressing
•Let the 16-bit immediate field be a
signed two’s complement integer to
be added to the PC if we take the
branch.
•Now we can branch ± 215 bytes from
the PC, which should be enough to
cover almost any loop.
•Any ideas to further optimize this?

CS61C L10 MIPS Instruction Representation II, Floating Point I (10) Garcia, Fall 2005 © UCB

Branches: PC-Relative Addressing (4/5)

•Note: Instructions are words, so
they’re word aligned (byte address is
always a multiple of 4, which means it
ends with 00 in binary).
•So the number of bytes to add to the PC
will always be a multiple of 4.
•So specify the immediate in words.

•Now, we can branch ± 215 words from
the PC (or ± 217 bytes), so we can
handle loops 4 times as large.

CS61C L10 MIPS Instruction Representation II, Floating Point I (11) Garcia, Fall 2005 © UCB

Branches: PC-Relative Addressing (5/5)
•Branch Calculation:
• If we don’t take the branch:

PC = PC + 4
PC+4 = byte address of next instruction

• If we do take the branch:
PC = (PC + 4) + (immediate * 4)

•Observations
- Immediate field specifies the number of

words to jump, which is simply the number of
instructions to jump.

- Immediate field can be positive or negative.
- Due to hardware, add immediate to (PC+4),

not to PC; will be clearer why later in course
CS61C L10 MIPS Instruction Representation II, Floating Point I (12) Garcia, Fall 2005 © UCB

Branch Example (1/3)
•MIPS Code:

Loop: beq $9,$0,End
add $8,$8,$10
addi $9,$9,-1
j Loop

End:

•beq branch is I-Format:
opcode = 4 (look up in table)
rs = 9 (first operand)
rt = 0 (second operand)
immediate = ???

CS61C L10 MIPS Instruction Representation II, Floating Point I (13) Garcia, Fall 2005 © UCB

Branch Example (2/3)
•MIPS Code:

Loop: beq $9,$0,End
addi $8,$8,$10
addi $9,$9,-1
j Loop

End:

•Immediate Field:
•Number of instructions to add to (or
subtract from) the PC, starting at the
instruction following the branch.
• In beq case, immediate = 3

CS61C L10 MIPS Instruction Representation II, Floating Point I (14) Garcia, Fall 2005 © UCB

Branch Example (3/3)
•MIPS Code:

Loop: beq $9,$0,End
addi $8,$8,$10
addi $9,$9,-1
j Loop

End:

4 9 0 3

decimal representation:

binary representation:
000100 01001 00000 0000000000000011

CS61C L10 MIPS Instruction Representation II, Floating Point I (15) Garcia, Fall 2005 © UCB

Questions on PC-addressing

•Does the value in branch field change
if we move the code?
•What do we do if destination is > 215
instructions away from branch?
•Since it’s limited to ± 215 instructions,
doesn’t this generate lots of extra
MIPS instructions?
•Why do we need all these addressing
modes? Why not just one?

CS61C L10 MIPS Instruction Representation II, Floating Point I (17) Garcia, Fall 2005 © UCB

Upcoming Calendar

SDS I

Running
Program

II
 (Proj 2 due)

Floating
Pt II

(No Dan OH)

Wed

SDS
Exam

Midterm
 5:30-

8:30pm
Here!

(155 Dwin)

#8
Midterm

week
Sun 2pm

Review
10 Evans

Running
Program

 (Proj 2 really
due)

MIPS Inst
Format III /
Running

Program I

#7
Next
week

Floating
Pt

MIPS Inst
Format II /

Floating Pt I
#6

This
week

Thu LabMonWeek #

CS61C L10 MIPS Instruction Representation II, Floating Point I (18) Garcia, Fall 2005 © UCB

J-Format Instructions (1/5)

•For branches, we assumed that we
won’t want to branch too far, so we
can specify change in PC.
•For general jumps (j and jal), we
may jump to anywhere in memory.
• Ideally, we could specify a 32-bit
memory address to jump to.
•Unfortunately, we can’t fit both a 6-bit
opcode and a 32-bit address into a
single 32-bit word, so we compromise.

CS61C L10 MIPS Instruction Representation II, Floating Point I (19) Garcia, Fall 2005 © UCB

J-Format Instructions (2/5)
•Define “fields” of the following
number of bits each:

6 bits 26 bits

opcode target address

•As usual, each field has a name:

•Key Concepts
•Keep opcode field identical to R-format
and I-format for consistency.
•Combine all other fields to make room for
large target address.

CS61C L10 MIPS Instruction Representation II, Floating Point I (20) Garcia, Fall 2005 © UCB

J-Format Instructions (3/5)

•For now, we can specify 26 bits of the
32-bit bit address.
•Optimization:
•Note that, just like with branches, jumps
will only jump to word aligned addresses,
so last two bits are always 00 (in binary).
•So let’s just take this for granted and not
even specify them.

CS61C L10 MIPS Instruction Representation II, Floating Point I (21) Garcia, Fall 2005 © UCB

J-Format Instructions (4/5)
•Now specify 28 bits of a 32-bit address
•Where do we get the other 4 bits?
•By definition, take the 4 highest order bits
from the PC.
• Technically, this means that we cannot
jump to anywhere in memory, but it’s
adequate 99.9999…% of the time, since
programs aren’t that long
- only if straddle a 256 MB boundary

• If we absolutely need to specify a 32-bit
address, we can always put it in a register
and use the jr instruction.

CS61C L10 MIPS Instruction Representation II, Floating Point I (22) Garcia, Fall 2005 © UCB

J-Format Instructions (5/5)

•Summary:
•New PC = { PC[31..28], target address, 00 }

•Understand where each part came from!
•Note: { , , } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit
address
• { 1010, 11111111111111111111111111, 00 }
= 10101111111111111111111111111100
•Note: Book uses ||

CS61C L10 MIPS Instruction Representation II, Floating Point I (24) Garcia, Fall 2005 © UCB

In semi-conclusion…

•MIPS Machine Language Instruction:
32 bits representing a single instruction

•Branches use PC-relative addressing,
Jumps use absolute addressing.
•Disassembly is simple and starts by
decoding opcode field. (more in a week)

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode

CS61C L10 MIPS Instruction Representation II, Floating Point I (25) Garcia, Fall 2005 © UCB

Quote of the day

“95% of the
folks out there are

completely clueless
about floating-point.”
James Gosling
Sun Fellow
Java Inventor
1998-02-28

CS61C L10 MIPS Instruction Representation II, Floating Point I (26) Garcia, Fall 2005 © UCB

Review of Numbers

•Computers are made to deal with
numbers
•What can we represent in N bits?
•Unsigned integers:

0 to 2N - 1
•Signed Integers (Two’s Complement)

-2(N-1) to 2(N-1) - 1

CS61C L10 MIPS Instruction Representation II, Floating Point I (27) Garcia, Fall 2005 © UCB

Other Numbers
•What about other numbers?
•Very large numbers? (seconds/century)

3,155,760,00010 (3.1557610 x 109)
•Very small numbers? (atomic diameter)

0.0000000110 (1.010 x 10-8)
•Rationals (repeating pattern)

2/3 (0.666666666. . .)
• Irrationals

21/2 (1.414213562373. . .)
• Transcendentals

e (2.718...), π (3.141...)

•All represented in scientific notation
CS61C L10 MIPS Instruction Representation II, Floating Point I (28) Garcia, Fall 2005 © UCB

Scientific Notation (in Decimal)

6.0210 x 1023

radix (base)decimal point

mantissa exponent

• Normalized form: no leadings 0s
(exactly one digit to left of decimal point)
• Alternatives to representing 1/1,000,000,000

• Normalized: 1.0 x 10-9

• Not normalized: 0.1 x 10-8,10.0 x 10-10

CS61C L10 MIPS Instruction Representation II, Floating Point I (29) Garcia, Fall 2005 © UCB

Scientific Notation (in Binary)

1.0two x 2-1

radix (base)“binary point”

exponent

•Computer arithmetic that supports it
called floating point, because it
represents numbers where the binary
point is not fixed, as it is for integers
•Declare such variable in C as float

mantissa

CS61C L10 MIPS Instruction Representation II, Floating Point I (30) Garcia, Fall 2005 © UCB

Floating Point Representation (1/2)
•Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

•Multiple of Word Size (32 bits)

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
•S represents Sign
Exponent represents y’s
Significand represents x’s
•Represent numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

CS61C L10 MIPS Instruction Representation II, Floating Point I (31) Garcia, Fall 2005 © UCB

Floating Point Representation (2/2)

•What if result too large? (> 2.0x1038)
•Overflow!
•Overflow ⇒ Exponent larger than
represented in 8-bit Exponent field

•What if result too small? (>0, < 2.0x10-38)
•Underflow!
•Underflow ⇒ Negative exponent larger than
represented in 8-bit Exponent field

•How to reduce chances of overflow or
underflow?

CS61C L10 MIPS Instruction Representation II, Floating Point I (32) Garcia, Fall 2005 © UCB

Double Precision Fl. Pt. Representation
•Next Multiple of Word Size (64 bits)

•Double Precision (vs. Single Precision)
•C variable declared as double
•Represent numbers almost as small as
2.0 x 10-308 to almost as large as 2.0 x 10308

•But primary advantage is greater accuracy
due to larger significand

031
S Exponent

30 20 19
Significand

1 bit 11 bits 20 bits
Significand (cont’d)

32 bits

CS61C L10 MIPS Instruction Representation II, Floating Point I (33) Garcia, Fall 2005 © UCB

QUAD Precision Fl. Pt. Representation
•Next Multiple of Word Size (128 bits)
•Unbelievable range of numbers
•Unbelievable precision (accuracy)
•This is currently being worked on
•The current version has 15 bits for the
exponent and 112 bits for the
significand
•Oct-Precision? That’s just silly! It’s
been implemented before…

CS61C L10 MIPS Instruction Representation II, Floating Point I (34) Garcia, Fall 2005 © UCB

IEEE 754 Floating Point Standard (1/4)
•Single Precision, DP similar
•Sign bit: 1 means negative

0 means positive
•Significand:
• To pack more bits, leading 1 implicit for
normalized numbers
• 1 + 23 bits single, 1 + 52 bits double
• always true: Significand < 1

(for normalized numbers)

•Note: 0 has no leading 1, so reserve
exponent value 0 just for number 0

CS61C L10 MIPS Instruction Representation II, Floating Point I (35) Garcia, Fall 2005 © UCB

IEEE 754 Floating Point Standard (2/4)
•Kahan wanted FP numbers to be used
even if no FP hardware; e.g., sort records
with FP numbers using integer compares
•Could break FP number into 3 parts:
compare signs, then compare exponents,
then compare significands
•Wanted it to be faster, single compare if
possible, especially if positive numbers
•Then want order:
•Highest order bit is sign (negative < positive)
•Exponent next, so big exponent => bigger #
•Significand last: exponents same => bigger #

CS61C L10 MIPS Instruction Representation II, Floating Point I (36) Garcia, Fall 2005 © UCB

IEEE 754 Floating Point Standard (3/4)
•Negative Exponent?
• 2’s comp? 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)

0 1111 1111 000 0000 0000 0000 0000 00001/2
0 0000 0001 000 0000 0000 0000 0000 00002
• This notation using integer compare of
1/2 v. 2 makes 1/2 > 2!

• Instead, pick notation 0000 0001 is most
negative, and 1111 1111 is most positive
• 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)

1/2 0 0111 1110 000 0000 0000 0000 0000 0000
0 1000 0000 000 0000 0000 0000 0000 00002

CS61C L10 MIPS Instruction Representation II, Floating Point I (37) Garcia, Fall 2005 © UCB

IEEE 754 Floating Point Standard (4/4)
•Called Biased Notation, where bias is
number subtract to get real number
• IEEE 754 uses bias of 127 for single prec.
•Subtract 127 from Exponent field to get
actual value for exponent
• 1023 is bias for double precision

•Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

•Double precision identical, except with
exponent bias of 1023

CS61C L10 MIPS Instruction Representation II, Floating Point I (40) Garcia, Fall 2005 © UCB

“And in conclusion…”
•Floating Point numbers approximate
values that we want to use.
• IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers
•Every desktop or server computer sold since
~1997 follows these conventions

•Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

•Double precision identical, bias of 1023

