
CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #9 – MIPS Logical & Shift Ops, and
Instruction Representation I

2005-09-28
There is one handout
today at the front and

back of the room!

Prof Doug Tygar
revealed that you can just listen

to the sound of keystrokes to
find out what’s typed…beware!

Hearing keys?! ⇒

www.earthtimes.org/articles/show/4103.html

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (2) Garcia, Fall 2005 © UCB

Review
• Functions called with jal, return with jr $ra.
• The stack is your friend: Use it to save

anything you need. Just be sure to leave it the
way you found it.
• Instructions we know so far

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw, lb, sb, lbu
Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

• Registers we know so far
• All of them!
• There are CONVENTIONS when calling procedures!

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (3) Garcia, Fall 2005 © UCB

Bitwise Operations

• Up until now, we’ve done arithmetic (add,
sub,addi), memory access (lw and sw),
and branches and jumps.
• All of these instructions view contents of

register as a single quantity (such as a
signed or unsigned integer)
• New Perspective: View register as 32 raw

bits rather than as a single 32-bit number
• Since registers are composed of 32 bits, we

may want to access individual bits (or
groups of bits) rather than the whole.
• Introduce two new classes of instructions:

• Logical & Shift Ops

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (4) Garcia, Fall 2005 © UCB

Logical Operators (1/3)

•Two basic logical operators:
•AND: outputs 1 only if both inputs are 1
•OR: outputs 1 if at least one input is 1

•Truth Table: standard table listing all
possible combinations of inputs and
resultant output for each. E.g.,

 A B A AND B A OR B
0 0
0 1
1 0
1 1

0
1
1
1

0
0
0
1

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (5) Garcia, Fall 2005 © UCB

Logical Operators (2/3)
•Logical Instruction Syntax:

1 2,3,4
•where

1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or

immediate (numerical constant)
• In general, can define them to accept
> 2 inputs, but in the case of MIPS
assembly, these accept exactly 2
inputs and produce 1 output
•Again, rigid syntax, simpler hardware

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (6) Garcia, Fall 2005 © UCB

Logical Operators (3/3)
• Instruction Names:

•and, or: Both of these expect the third
argument to be a register
•andi, ori: Both of these expect the
third argument to be an immediate

•MIPS Logical Operators are all
bitwise, meaning that bit 0 of the
output is produced by the respective
bit 0’s of the inputs, bit 1 by the bit
1’s, etc.
•C: Bitwise AND is & (e.g., z = x & y;)
•C: Bitwise OR is | (e.g., z = x | y;)

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (7) Garcia, Fall 2005 © UCB

Uses for Logical Operators (1/3)
•Note that anding a bit with 0 produces a
0 at the output while anding a bit with 1
produces the original bit.
•This can be used to create a mask.
•Example:

1011 0110 1010 0100 0011 1101 1001 1010
0000 0000 0000 0000 0000 1111 1111 1111

• The result of anding these:
0000 0000 0000 0000 0000 1101 1001 1010

mask:

mask last 12 bits

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (8) Garcia, Fall 2005 © UCB

Uses for Logical Operators (2/3)

•The second bitstring in the example is
called a mask. It is used to isolate the
rightmost 12 bits of the first bitstring
by masking out the rest of the string
(e.g. setting it to all 0s).

•Thus, the and operator can be used
to set certain portions of a bitstring to
0s, while leaving the rest alone.
• In particular, if the first bitstring in the
above example were in $t0, then the
following instruction would mask it:
andi $t0,$t0,0xFFF

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (9) Garcia, Fall 2005 © UCB

Uses for Logical Operators (3/3)

•Similarly, note that oring a bit with 1
produces a 1 at the output while
oring a bit with 0 produces the
original bit.
•This can be used to force certain bits
of a string to 1s.
• For example, if $t0 contains
0x12345678, then after this instruction:
ori $t0, $t0, 0xFFFF

•… $t0 contains 0x1234FFFF (e.g. the
high-order 16 bits are untouched, while
the low-order 16 bits are forced to 1s).

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (10) Garcia, Fall 2005 © UCB

Shift Instructions (1/4)
•Move (shift) all the bits in a word to the
left or right by a number of bits.
•Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110
•Example: shift left by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (11) Garcia, Fall 2005 © UCB

Shift Instructions (2/4)

• Shift Instruction Syntax:
1 2,3,4
• where

1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant < 32)

•MIPS shift instructions:
1. sll (shift left logical): shifts left and fills

emptied bits with 0s
2. srl (shift right logical): shifts right and fills

emptied bits with 0s
3. sra (shift right arithmetic): shifts right and fills

emptied bits by sign extending

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (12) Garcia, Fall 2005 © UCB

Shift Instructions (3/4)
•Example: shift right arith by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

•Example: shift right arith by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (13) Garcia, Fall 2005 © UCB

Shift Instructions (4/4)

•Since shifting may be faster than
multiplication, a good compiler
usually notices when C code
multiplies by a power of 2 and
compiles it to a shift instruction:
a *= 8; (in C)
would compile to:
sll $s0,$s0,3 (in MIPS)

•Likewise, shift right to divide by
powers of 2
• remember to use sra

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (14) Garcia, Fall 2005 © UCB

What does r have to push on the stack before “jal e”?

1: 1 of ($s0,$sp,$v0,$t0,$a0,$ra)
2: 2 of ($s0,$sp,$v0,$t0,$a0,$ra)
3: 3 of ($s0,$sp,$v0,$t0,$a0,$ra)
4: 4 of ($s0,$sp,$v0,$t0,$a0,$ra)
5: 5 of ($s0,$sp,$v0,$t0,$a0,$ra)
6: 6 of ($s0,$sp,$v0,$t0,$a0,$ra)
7: 0 of ($s0,$sp,$v0,$t0,$a0,$ra)

Peer Instruction
r: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 ... ### PUSH REGISTER(S) TO STACK?
 jal e # Call e
 ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 jr $ra # Return to caller of r

e: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 jr $ra # Return to r

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (15) Garcia, Fall 2005 © UCB

What does r have to push on the stack before “jal e”?

1: 1 of ($s0,$sp,$v0,$t0,$a0,$ra)
2: 2 of ($s0,$sp,$v0,$t0,$a0,$ra)
3: 3 of ($s0,$sp,$v0,$t0,$a0,$ra)
4: 4 of ($s0,$sp,$v0,$t0,$a0,$ra)
5: 5 of ($s0,$sp,$v0,$t0,$a0,$ra)
6: 6 of ($s0,$sp,$v0,$t0,$a0,$ra)
7: 0 of ($s0,$sp,$v0,$t0,$a0,$ra)

Peer Instruction Answer
r: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 ... ### PUSH REGISTER(S) TO STACK?
 jal e # Call e
 ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 jr $ra # Return to caller of r

e: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem
 jr $ra # Return to r

Volatile! -- need to pushSaved

e can’t return changed,
 no need to push

e can return changed

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (16) Garcia, Fall 2005 © UCB

Administrivia

•Any administrivia?

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (17) Garcia, Fall 2005 © UCB

Overview – Instruction Representation

•Big idea: stored program
• consequences of stored program

• Instructions as numbers
• Instruction encoding
•MIPS instruction format for Add
instructions
•MIPS instruction format for
Immediate, Data transfer instructions

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (18) Garcia, Fall 2005 © UCB

Big Idea: Stored-Program Concept

•Computers built on 2 key principles:
1) Instructions are represented as

numbers.
2) Therefore, entire programs can be

stored in memory to be read or
written just like numbers (data).

•Simplifies SW/HW of computer systems:
•Memory technology for data also
used for programs

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (19) Garcia, Fall 2005 © UCB

Consequence #1: Everything Addressed
•Since all instructions and data are stored
in memory as numbers, everything has a
memory address: instructions, data words
• both branches and jumps use these

•C pointers are just memory addresses:
they can point to anything in memory
•Unconstrained use of addresses can lead to
nasty bugs; up to you in C; limits in Java

•One register keeps address of instruction
being executed: “Program Counter” (PC)
•Basically a pointer to memory: Intel calls it
Instruction Address Pointer, a better name

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (20) Garcia, Fall 2005 © UCB

Consequence #2: Binary Compatibility
•Programs are distributed in binary form
•Programs bound to specific instruction set
•Different version for Macintoshes and PCs

•New machines want to run old programs
(“binaries”) as well as programs compiled
to new instructions
•Leads to instruction set evolving over time
•Selection of Intel 8086 in 1981 for 1st IBM
PC is major reason latest PCs still use
80x86 instruction set (Pentium 4); could
still run program from 1981 PC today

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (21) Garcia, Fall 2005 © UCB

Instructions as Numbers (1/2)

•Currently all data we work with is in
words (32-bit blocks):
•Each register is a word.
•lw and sw both access memory one
word at a time.

•So how do we represent instructions?
•Remember: Computer only understands
1s and 0s, so “add $t0,$0,$0” is
meaningless.
•MIPS wants simplicity: since data is in
words, make instructions be words too

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (22) Garcia, Fall 2005 © UCB

Instructions as Numbers (2/2)
•One word is 32 bits, so divide
instruction word into “fields”.
•Each field tells computer something
about instruction.
•We could define different fields for
each instruction, but MIPS is based
on simplicity, so define 3 basic types
of instruction formats:
•R-format
• I-format
• J-format

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (23) Garcia, Fall 2005 © UCB

Instruction Formats
• I-format: used for instructions with
immediates, lw and sw (since the offset
counts as an immediate), and the
branches (beq and bne),
• (but not the shift instructions; later)

•J-format: used for j and jal
•R-format: used for all other instructions
• It will soon become clear why the
instructions have been partitioned in
this way.

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (24) Garcia, Fall 2005 © UCB

R-Format Instructions (1/5)
•Define “fields” of the following number
of bits each: 6 + 5 + 5 + 5 + 5 + 6 = 32
6 5 5 5 65

opcode rs rt rd functshamt

•For simplicity, each field has a name:

• Important: On these slides and in
book, each field is viewed as a 5- or 6-
bit unsigned integer, not as part of a
32-bit integer.
•Consequence: 5-bit fields can represent
any number 0-31, while 6-bit fields can
represent any number 0-63.

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (25) Garcia, Fall 2005 © UCB

R-Format Instructions (2/5)
•What do these field integer values tell us?

•opcode: partially specifies what instruction
it is
- Note: This number is equal to 0 for all R-Format

instructions.
•funct: combined with opcode, this number
exactly specifies the instruction
•Question: Why aren’t opcode and funct a
single 12-bit field?
- Answer: We’ll answer this later.

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (26) Garcia, Fall 2005 © UCB

R-Format Instructions (3/5)
•More fields:

•rs (Source Register): generally used to
specify register containing first operand
•rt (Target Register): generally used to
specify register containing second
operand (note that name is misleading)
•rd (Destination Register): generally
used to specify register which will
receive result of computation

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (27) Garcia, Fall 2005 © UCB

R-Format Instructions (4/5)
•Notes about register fields:
•Each register field is exactly 5 bits, which
means that it can specify any unsigned
integer in the range 0-31. Each of these
fields specifies one of the 32 registers by
number.
• The word “generally” was used because
there are exceptions that we’ll see later.
E.g.,
- mult and div have nothing important in the
rd field since the dest registers are hi and lo

- mfhi and mflo have nothing important in the
rs and rt fields since the source is
determined by the instruction (p. 264 P&H)

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (28) Garcia, Fall 2005 © UCB

R-Format Instructions (5/5)

•Final field:
•shamt: This field contains the amount a
shift instruction will shift by. Shifting a
32-bit word by more than 31 is useless,
so this field is only 5 bits (so it can
represent the numbers 0-31).
• This field is set to 0 in all but the shift
instructions.

•For a detailed description of field
usage for each instruction, see green
insert in COD 3/e
• (You can bring with you to all exams)

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (29) Garcia, Fall 2005 © UCB

R-Format Example (1/2)

•MIPS Instruction:
add $8,$9,$10

opcode = 0 (look up in table in book)
funct = 32 (look up in table in book)
rd = 8 (destination)
rs = 9 (first operand)
rt = 10 (second operand)
shamt = 0 (not a shift)

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (30) Garcia, Fall 2005 © UCB

R-Format Example (2/2)

•MIPS Instruction:
add $8,$9,$10

0 9 10 8 320
Binary number per field representation:

•Called a Machine Language Instruction

Decimal number per field representation:

hex representation: 012A 4020hex
decimal representation: 19,546,144ten

000000 01001 01010 01000 10000000000
hex

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (31) Garcia, Fall 2005 © UCB

I-Format Instructions (1/4)
•What about instructions with
immediates?
• 5-bit field only represents numbers up to
the value 31: immediates may be much
larger than this
• Ideally, MIPS would have only one
instruction format (for simplicity):
unfortunately, we need to compromise

•Define new instruction format that is
partially consistent with R-format:
• First notice that, if instruction has
immediate, then it uses at most 2 registers.

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (32) Garcia, Fall 2005 © UCB

I-Format Instructions (2/4)
•Define “fields” of the following number
of bits each: 6 + 5 + 5 + 16 = 32 bits

6 5 5 16

opcode rs rt immediate

•Again, each field has a name:

•Key Concept: Only one field is
inconsistent with R-format. Most
importantly, opcode is still in same
location.

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (33) Garcia, Fall 2005 © UCB

I-Format Instructions (3/4)
•What do these fields mean?

•opcode: same as before except that, since
there’s no funct field, opcode uniquely specifies
an instruction in I-format
• This also answers question of why R-format has

two 6-bit fields to identify instruction instead of a
single 12-bit field: in order to be consistent with
other formats.

•rs: specifies the only register operand (if there is
one)

•rt: specifies register which will receive result of
computation (this is why it’s called the target
register “rt”)

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (34) Garcia, Fall 2005 © UCB

I-Format Instructions (4/4)
•The Immediate Field:

•addi, slti, sltiu, the immediate is
sign-extended to 32 bits. Thus, it’s
treated as a signed integer.
• 16 bits  can be used to represent
immediate up to 216 different values
• This is large enough to handle the offset
in a typical lw or sw, plus a vast majority
of values that will be used in the slti
instruction.
•We’ll see what to do when the number is
too big in our next lecture…

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (35) Garcia, Fall 2005 © UCB

I-Format Example (1/2)

•MIPS Instruction:
addi $21,$22,-50

opcode = 8 (look up in table in book)
rs = 22 (register containing operand)
rt = 21 (target register)
immediate = -50 (by default, this is decimal)

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (36) Garcia, Fall 2005 © UCB

I-Format Example (2/2)

•MIPS Instruction:
addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex
decimal representation: 584,449,998ten

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (37) Garcia, Fall 2005 © UCB

Peer Instruction
Which instruction has same representation as 35ten?

1. add $0, $0, $0
2. subu $s0,$s0,$s0
3. lw $0, 0($0)
4. addi $0, $0, 35
5. subu $0, $0, $0
6. Trick question!

Instructions are not numbers
Registers numbers and names:

0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7
Opcodes and function fields (if necessary)
add: opcode = 0, funct = 32
subu: opcode = 0, funct = 35
addi: opcode = 8
lw: opcode = 35

opcode rs rt offset

rd functshamtopcode rs rt

opcode rs rt immediate

rd functshamtopcode rs rt

rd functshamtopcode rs rt

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (38) Garcia, Fall 2005 © UCB

Peer Instruction Answer
Which instruction bit pattern = number 35?

1. add $0, $0, $0
2. subu $s0,$s0,$s0
3. lw $0, 0($0)
4. addi $0, $0, 35
5. subu $0, $0, $0
6. Trick question!

Instructions != numbers
Registers numbers and names:

0: $0, …, 8: $t0, 9:$t1, …,16: $s0, 17: $s1, …,
Opcodes and function fields

add: opcode = 0, function field = 32
subu: opcode = 0, function field = 35
addi: opcode = 8
lw: opcode = 35

35 0 0 0

0 3200 0 0

8 0 0 35

16 3500 16 16

0 3500 0 0

CS61C L9 MIPS Logical & Shift Ops, and Instruction Representation I (39) Garcia, Fall 2005 © UCB

In conclusion…
• Logical and Shift Instructions

• Operate on individual bits (arithmetic operate on entire word)
• Use to isolate fields, either by masking or by shifting back & forth
• Use shift left logical, sll,for multiplication by powers of 2
• Use shift right arithmetic, sra,for division by powers of 2

• Simplifying MIPS: Define instructions to be same size as
data word (one word) so that they can use the same
memory (compiler can use lw and sw).
• Computer actually stores programs as a series of these

32-bit numbers.
• MIPS Machine Language Instruction:

32 bits representing a single instruction

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode

