
CS61C L8 MIPS Procedures (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures
Lecture #8 – MIPS Procedures

2005-09-26 There is one handout
today at the front and

back of the room!

 No. 11 Cal runs over the
Aggies 41-13 are are now 4-0 for 1st

time since 1996. Justin Forsett ran
for 235 yds, Joe Ayoob rushed for 3

TDs. Next Sat…Arizona @ home!

New Mexico St who? ⇒

calbears.collegesports.com/sports/m-footbl/recaps/092405aaa.html

CS61C L8 MIPS Procedures (2) Garcia, Fall 2005 © UCB

Review
• A Decision allows us to decide what to

execute at run-time rather than compile-time.
• C Decisions are made using conditional

statements within if, while, do while, for.
•MIPS Decision making instructions are the

conditional branches: beq and bne.
• In order to help the conditional branches

make decisions concerning inequalities, we
introduce a single instruction: “Set on Less
Than”called slt, slti, sltu, sltiu
• Unsigned add/sub don’t cause overflow
• New MIPS Instructions:
 beq, bne, j, sll, srl

slt, slti, sltu, sltiu
addu, addiu, subu

CS61C L8 MIPS Procedures (3) Garcia, Fall 2005 © UCB

C functions
main() {
int i,j,k,m;
...
i = mult(j,k); ...
m = mult(i,i); ...

}

/* really dumb mult function */

int mult (int mcand, int mlier){
int product;

 product = 0;
while (mlier > 0) {
 product = product + mcand;
 mlier = mlier -1; }
return product;
}

What information must
compiler/programmer
keep track of?

What instructions can
accomplish this?

CS61C L8 MIPS Procedures (4) Garcia, Fall 2005 © UCB

Function Call Bookkeeping

•Registers play a major role in
keeping track of information for
function calls.
•Register conventions:
•Return address $ra

•Arguments $a0, $a1, $a2, $a3

•Return value $v0, $v1

• Local variables $s0, $s1, … , $s7

•The stack is also used; more later.

CS61C L8 MIPS Procedures (5) Garcia, Fall 2005 © UCB

Instruction Support for Functions (1/6)
 ... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

 address
1000
1004
1008
1012
1016
2000
2004

C

M
I
P
S

In MIPS, all instructions
are 4 bytes, and stored in
memory just like data. So
here we show the
addresses of where the
programs are stored.

CS61C L8 MIPS Procedures (6) Garcia, Fall 2005 © UCB

Instruction Support for Functions (2/6)
 ... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

 address
1000 add $a0,$s0,$zero # x = a
1004 add $a1,$s1,$zero # y = b
1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #jump to sum
1016 ...
2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instruction

C

M
I
P
S

CS61C L8 MIPS Procedures (7) Garcia, Fall 2005 © UCB

Instruction Support for Functions (3/6)
 ... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instruction

C

M
I
P
S

•Question: Why use jr here? Why not
simply use j?
• Answer: sum might be called by many

functions, so we can’t return to a fixed
place. The calling proc to sum must be able
to say “return here” somehow.

CS61C L8 MIPS Procedures (8) Garcia, Fall 2005 © UCB

Instruction Support for Functions (4/6)
• Single instruction to jump and save return

address: jump and link (jal)
• Before:

1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #goto sum

• After:
1008 jal sum # $ra=1012,goto sum
•Why have a jal? Make the common case fast:

function calls are very common. Also, you don’t
have to know where the code is
 loaded into memory with jal.

CS61C L8 MIPS Procedures (9) Garcia, Fall 2005 © UCB

Instruction Support for Functions (5/6)

•Syntax for jal (jump and link) is
same as for j (jump):

jal label

• � jal should really be called laj for
“link and jump”:
•Step 1 (link): Save address of next
instruction into $ra (Why next
instruction? Why not current one?)
•Step 2 (jump): Jump to the given label

CS61C L8 MIPS Procedures (10) Garcia, Fall 2005 © UCB

Instruction Support for Functions (6/6)
•Syntax for jr (jump register):

jr register

• Instead of providing a label to jump to,
the jr instruction provides a register
which contains an address to jump to.
•Only useful if we know exact address to
jump to.
•Very useful for function calls:

•jal stores return address in register ($ra)
•jr $ra jumps back to that address

CS61C L8 MIPS Procedures (11) Garcia, Fall 2005 © UCB

Nested Procedures (1/2)
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

•Something called sumSquare, now
sumSquare is calling mult.
•So there’s a value in $ra that
sumSquare wants to jump back to, but
this will be overwritten by the call to
mult.
•Need to save sumSquare return
address before call to mult.

CS61C L8 MIPS Procedures (12) Garcia, Fall 2005 © UCB

Nested Procedures (2/2)
• In general, may need to save some
other info in addition to $ra.
•When a C program is run, there are 3
important memory areas allocated:
•Static: Variables declared once per
program, cease to exist only after
execution completes. E.g., C globals
•Heap: Variables declared dynamically
•Stack: Space to be used by procedure
during execution; this is where we can
save register values

CS61C L8 MIPS Procedures (13) Garcia, Fall 2005 © UCB

C memory Allocation review

0

∞
Address

Code Program

Static Variables declared
once per program

Heap Explicitly created space,
e.g., malloc(); C pointers

Stack Space for saved
procedure information$sp

stack
pointer

CS61C L8 MIPS Procedures (14) Garcia, Fall 2005 © UCB

Using the Stack (1/2)

•So we have a register $sp which
always points to the last used space
in the stack.
•To use stack, we decrement this
pointer by the amount of space we
need and then fill it with info.
•So, how do we compile this?

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}

CS61C L8 MIPS Procedures (15) Garcia, Fall 2005 © UCB

Using the Stack (2/2)
•Hand-compile
sumSquare:
 addi $sp,$sp,-8 # space on stack
 sw $ra, 4($sp) # save ret addr
 sw $a1, 0($sp) # save y

 add $a1,$a0,$zero # mult(x,x)
 jal mult # call mult

 lw $a1, 0($sp) # restore y
 add $v0,$v0,$a1 # mult()+y
 lw $ra, 4($sp) # get ret addr
 addi $sp,$sp,8 # restore stack
 jr $ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

CS61C L8 MIPS Procedures (16) Garcia, Fall 2005 © UCB

Steps for Making a Procedure Call

1) Save necessary values onto stack.
2) Assign argument(s), if any.
3) jal call
4) Restore values from stack.

CS61C L8 MIPS Procedures (17) Garcia, Fall 2005 © UCB

Rules for Procedures

•Called with a jal instruction, returns
with a jr $ra
•Accepts up to 4 arguments in $a0,
$a1, $a2 and $a3
•Return value is always in $v0 (and if
necessary in $v1)
•Must follow register conventions
(even in functions that only you will
call)! So what are they?
•We’ll see these in a few slides…

CS61C L8 MIPS Procedures (18) Garcia, Fall 2005 © UCB

Basic Structure of a Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body (call other functions…)
ra

memory

CS61C L8 MIPS Procedures (19) Garcia, Fall 2005 © UCB

Administrivia
•We have a midterm&review time & date
•Review: Sun 2005-10-16 @ 2pm in 10 Evans
•Midterm: Mon 2005-10-17, 5:30-8:30pm here!
•DSP or Conflicts? Email Jeremy

•Dan’s before-class graphics videos:
www.siggraph.org/publications/video-review/SVR.html

•Project 1 due tonight @ 11:59pm
•An easy HW3 follows, due Friday

CS61C L8 MIPS Procedures (20) Garcia, Fall 2005 © UCB

What C code properly fills in
the blank in loop below?

Peer Instruction

do {i--;} while(__);

Loop:addi $s0,$s0,-1 # i = i - 1
 slti $t0,$s1,2 # $t0 = (j < 2)
 beq $t0,$0 ,Loop # goto Loop if $t0 == 0
 slt $t0,$s1,$s0 # $t0 = (j < i)
 bne $t0,$0 ,Loop # goto Loop if $t0 != 0

1: j < 2 && j < i
2: j ≥ 2 && j < i
3: j < 2 && j ≥ i
4: j ≥ 2 && j ≥ i
5: j > 2 && j < i
6: j < 2 || j < i
7: j ≥ 2 || j < i
8: j < 2 || j ≥ i
9: j ≥ 2 || j ≥ i
0: j > 2 || j < i

($s0=i, $s1=j)

CS61C L8 MIPS Procedures (21) Garcia, Fall 2005 © UCB

Register Conventions (1/4)
•CalleR: the calling function
•CalleE: the function being called
•When callee returns from executing,
the caller needs to know which
registers may have changed and
which are guaranteed to be unchanged.
•Register Conventions: A set of
generally accepted rules as to which
registers will be unchanged after a
procedure call (jal) and which may be
changed.

CS61C L8 MIPS Procedures (22) Garcia, Fall 2005 © UCB

Register Conventions (2/4) - saved
•$0: No Change. Always 0.
•$s0-$s7: Restore if you change. Very
important, that’s why they’re called
saved registers. If the callee changes
these in any way, it must restore the
original values before returning.
•$sp: Restore if you change. The stack
pointer must point to the same place
before and after the jal call, or else
the caller won’t be able to restore
values from the stack.
•HINT -- All saved registers start with S!

CS61C L8 MIPS Procedures (23) Garcia, Fall 2005 © UCB

Register Conventions (3/4) - volatile
•$ra: Can Change. The jal call itself
will change this register. Caller needs
to save on stack if nested call.
•$v0-$v1: Can Change. These will
contain the new returned values.
•$a0-$a3: Can change. These are
volatile argument registers. Caller
needs to save if they’ll need them
after the call.
•$t0-$t9: Can change. That’s why
they’re called temporary: any
procedure may change them at any
time. Caller needs to save if they’ll
need them afterwards.

CS61C L8 MIPS Procedures (24) Garcia, Fall 2005 © UCB

Register Conventions (4/4)

•What do these conventions mean?
• If function R calls function E, then
function R must save any temporary
registers that it may be using onto the
stack before making a jal call.
• Function E must save any S (saved)
registers it intends to use before
garbling up their values
•Remember: Caller/callee need to save
only temporary/saved registers they are
using, not all registers.

CS61C L8 MIPS Procedures (25) Garcia, Fall 2005 © UCB

Parents leaving for weekend analogy (1/5)

•Parents (main) leaving for weekend
•They (caller) give keys to the house
to kid (callee) with the rules
(calling conventions):
•You can trash the temporary room(s),
like the den and basement (registers)
if you want, we don’t care about it
•BUT you’d better leave the rooms
(registers) that we want to save for the
guests untouched. “these rooms better
look the same when we return!”

•Who hasn’t heard this in their life?

CS61C L8 MIPS Procedures (26) Garcia, Fall 2005 © UCB

Parents leaving for weekend analogy (2/5)

•Kid now “owns” rooms (registers)
•Kid wants to use the saved rooms for
a wild, wild party (computation)
•What does kid (callee) do?
•Kid takes what was in these rooms and
puts them in the garage (memory)
•Kid throws the party, trashes everything
(except garage, who goes there?)
•Kid restores the rooms the parents
wanted saved after the party by
replacing the items from the garage
(memory) back into those saved rooms

CS61C L8 MIPS Procedures (27) Garcia, Fall 2005 © UCB

Parents leaving for weekend analogy (3/5)

•Same scenario, except before parents
return and kid replaces saved rooms…
•Kid (callee) has left valuable stuff
(data) all over.
•Kid’s friend (another callee) wants
the house for a party when the kid is
away
•Kid knows that friend might trash the
place destroying valuable stuff!
•Kid remembers rule parents taught and
now becomes the “heavy” (caller),
instructing friend (callee) on good
rules (conventions) of house.

CS61C L8 MIPS Procedures (28) Garcia, Fall 2005 © UCB

Parents leaving for weekend analogy (4/5)

• If kid had data in temporary rooms
(which were going to be trashed),
there are three options:
•Move items directly to garage (memory)
•Move items to saved rooms whose
contents have already been moved to
the garage (memory)
•Optimize lifestyle (code) so that the
amount you’ve got to shlep stuff back
and forth from garage (memory) is
minimized

•Otherwise: “Dude, where’s my data?!”

CS61C L8 MIPS Procedures (29) Garcia, Fall 2005 © UCB

Parents leaving for weekend analogy (5/5)

•Friend now “owns” rooms (registers)
•Friend wants to use the saved rooms
for a wild, wild party (computation)
•What does friend (callee) do?
• Friend takes what was in these rooms
and puts them in the garage (memory)
• Friend throws the party, trashes
everything (except garage)
• Friend restores the rooms the kid wanted
saved after the party by replacing the
items from the garage (memory) back into
those saved rooms

CS61C L8 MIPS Procedures (30) Garcia, Fall 2005 © UCB

Peer Instruction

When translating this to MIPS…
A. We COULD copy $a0 to $a1 (& then

not store $a0 or $a1 on the stack) to
store n across recursive calls.

B. We MUST save $a0 on the stack since
it gets changed.

C. We MUST save $ra on the stack since
we need to know where to return to…

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

int fact(int n){
 if(n == 0) return 1; else return(n*fact(n-1));}

CS61C L8 MIPS Procedures (31) Garcia, Fall 2005 © UCB

Bonus Example: Compile This (1/5)
main() {
int i,j,k,m; /* i-m:$s0-$s3 */
...
i = mult(j,k); ...
m = mult(i,i); ...

}

int mult (int mcand, int mlier){
int product;

 product = 0;
while (mlier > 0) {
 product += mcand;
 mlier -= 1; }
return product;
}

CS61C L8 MIPS Procedures (32) Garcia, Fall 2005 © UCB

Bonus Example: Compile This (2/5)
__start:

add $a0,$s1,$0 # arg0 = j
add $a1,$s2,$0 # arg1 = k
jal mult # call mult
add $s0,$v0,$0 # i = mult()
...
 add $a0,$s0,$0 # arg0 = i
add $a1,$s0,$0 # arg1 = i
jal mult # call mult
add $s3,$v0,$0 # m = mult()
...

done
main() {
int i,j,k,m; /* i-m:$s0-$s3 */
...
i = mult(j,k); ...
m = mult(i,i); ... }

CS61C L8 MIPS Procedures (33) Garcia, Fall 2005 © UCB

Bonus Example: Compile This (3/5)

•Notes:
•main function ends with done, not
jr $ra, so there’s no need to save $ra
onto stack
• all variables used in main function are
saved registers, so there’s no need to
save these onto stack

CS61C L8 MIPS Procedures (34) Garcia, Fall 2005 © UCB

Bonus Example: Compile This (4/5)
mult:

add $t0,$0,$0 # prod=0
Loop:
 slt $t1,$0,$a1 # mlr > 0?
 beq $t1,$0,Fin # no=>Fin
 add $t0,$t0,$a0 # prod+=mc
 addi $a1,$a1,-1 # mlr-=1
 j Loop # goto Loop

Fin:
 add $v0,$t0,$0 # $v0=prod
 jr $ra # return

int mult (int mcand, int mlier){
int product = 0;
while (mlier > 0) {
 product += mcand;
 mlier -= 1; }
return product;
}

CS61C L8 MIPS Procedures (35) Garcia, Fall 2005 © UCB

Bonus Example: Compile This (5/5)

•Notes:
• no jal calls are made from mult and we
don’t use any saved registers, so we
don’t need to save anything onto stack
• temp registers are used for intermediate
calculations (could have used s
registers, but would have to save the
caller’s on the stack.)
•$a1 is modified directly (instead of
copying into a temp register) since we
are free to change it
• result is put into $v0 before returning
(could also have modified $v0 directly)

CS61C L8 MIPS Procedures (36) Garcia, Fall 2005 © UCB

MIPS Registers

 The constant 0 $0 $zero
Reserved for Assembler $1 $at
Return Values $2-$3 $v0-$v1
Arguments $4-$7 $a0-$a3
Temporary $8-$15 $t0-$t7
Saved $16-$23 $s0-$s7
More Temporary $24-$25 $t8-$t9
Used by Kernel $26-27 $k0-$k1
Global Pointer $28 $gp
Stack Pointer $29 $sp
Frame Pointer $30 $fp
Return Address $31 $ra

(From COD 3rd Ed. green insert)
Use names for registers -- code is clearer!

CS61C L8 MIPS Procedures (37) Garcia, Fall 2005 © UCB

Other Registers

•$at: may be used by the assembler at
any time; unsafe to use
•$k0-$k1: may be used by the OS at
any time; unsafe to use
•$gp, $fp: don’t worry about them
•Note: Feel free to read up on $gp and
$fp in Appendix A, but you can write
perfectly good MIPS code without
them.

CS61C L8 MIPS Procedures (38) Garcia, Fall 2005 © UCB

“And in Conclusion…”
• Functions called with jal, return with jr $ra.
• The stack is your friend: Use it to save

anything you need. Just be sure to leave it the
way you found it.
• Instructions we know so far

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw, lb, sb, lbu
Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

• Registers we know so far
• All of them!
• There are CONVENTIONS when calling procedures!

