
CS61C L7 MIPS Decisions (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #7 – MIPS Decisions

2005-09-21 There is one handout
today at the front and

back of the room!

 In a move bound to gain great
PR & also hopefully deal with the paucity
of talented math & science teachers, IBM

has launched a program to pay to train
their engineers to become teachers! Yay!

IBM engineer → Teacher?! ⇒

www.nytimes.com/2005/09/17/education/17school.html CS61C L7 MIPS Decisions (2) Garcia, Fall 2005 © UCB

Review
• In MIPS Assembly Language:

• Registers replace C variables
• One Instruction (simple operation) per line
• Simpler is better, smaller is faster

• Memory is byte-addressable, but lw and sw access
one word at a time.
• A pointer (used by lw and sw) is just a memory

address, so we can add to it or subtract from it
(using offset).
• New Instructions:

add, addi, sub, lw, sw

• New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t9
Zero: $zero

CS61C L7 MIPS Decisions (3) Garcia, Fall 2005 © UCB

So Far...

•All instructions so far only manipulate
data…we’ve built a calculator.
• In order to build a computer, we need
ability to make decisions…
•C (and MIPS) provide labels to
support “goto” jumps to places in
code.

• C: Horrible style; MIPS: Necessary!

•Heads up: pull out some papers and
pens, you’ll do an in-class exercise!

CS61C L7 MIPS Decisions (4) Garcia, Fall 2005 © UCB

C Decisions: if Statements
•2 kinds of if statements in C

•if (condition) clause
•if (condition) clause1 else clause2

•Rearrange 2nd if into following:
 if (condition) goto L1;
 clause2;
 goto L2;
L1: clause1;
 L2:

•Not as elegant as if-else, but same
meaning

CS61C L7 MIPS Decisions (5) Garcia, Fall 2005 © UCB

MIPS Decision Instructions
•Decision instruction in MIPS:

•beq register1, register2, L1
•beq is “Branch if (registers are) equal”
Same meaning as (using C):
 if (register1==register2) goto L1

•Complementary MIPS decision instruction
•bne register1, register2, L1
•bne is “Branch if (registers are) not equal”
 Same meaning as (using C):
 if (register1!=register2) goto L1

•Called conditional branches
CS61C L7 MIPS Decisions (6) Garcia, Fall 2005 © UCB

MIPS Goto Instruction
• In addition to conditional branches,
MIPS has an unconditional branch:

j label

•Called a Jump Instruction: jump (or
branch) directly to the given label
without needing to satisfy any condition
•Same meaning as (using C):
 goto label
•Technically, it’s the same as:

beq $0,$0,label

since it always satisfies the condition.

CS61C L7 MIPS Decisions (7) Garcia, Fall 2005 © UCB

Compiling C if into MIPS (1/2)
•Compile by hand

if (i == j) f=g+h;
else f=g-h;

•Use this mapping:
 f: $s0
 g: $s1
 h: $s2
 i: $s3
 j: $s4

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

CS61C L7 MIPS Decisions (8) Garcia, Fall 2005 © UCB

Compiling C if into MIPS (2/2)

•Final compiled MIPS code:
 beq $s3,$s4,True # branch i==j
 sub $s0,$s1,$s2 # f=g-h(false)
 j Fin # goto Fin
True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Note: Compiler automatically creates labels to
handle decisions (branches).
Generally not found in HLL code.

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

•Compile by hand
if (i == j) f=g+h;
else f=g-h;

CS61C L7 MIPS Decisions (9) Garcia, Fall 2005 © UCB

Compiling C if into MIPS (1/2)
•Compile by hand

if (i == j) f=g+h;
else f=g-h;

•Use this mapping:
 f: $s0
 g: $s1
 h: $s2
 i: $s3
 j: $s4

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

CS61C L7 MIPS Decisions (10) Garcia, Fall 2005 © UCB

Compiling C if into MIPS (2/2)

•Final compiled MIPS code:
 beq $s3,$s4,True # branch i==j
 sub $s0,$s1,$s2 # f=g-h(false)
 j Fin # goto Fin
True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Note: Compiler automatically creates labels to
handle decisions (branches).
Generally not found in HLL code.

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

•Compile by hand
if (i == j) f=g+h;
else f=g-h;

CS61C L7 MIPS Decisions (11) Garcia, Fall 2005 © UCB

Overflow in Arithmetic (1/2)

•Reminder: Overflow occurs when
there is a mistake in arithmetic due to
the limited precision in computers.
•Example (4-bit unsigned numbers):

+15 1111
 +3 0011
+18 10010

• But we don’t have room for 5-bit
solution, so the solution would be 0010,
which is +2, and wrong.

CS61C L7 MIPS Decisions (12) Garcia, Fall 2005 © UCB

Overflow in Arithmetic (2/2)
•Some languages detect overflow (Ada),
some don’t (C)
•MIPS solution is 2 kinds of arithmetic
instructions to recognize 2 choices:

• add (add), add immediate (addi) and
subtract (sub) cause overflow to be detected

• add unsigned (addu), add immediate
unsigned (addiu) and subtract unsigned
(subu) do not cause overflow detection

•Compiler selects appropriate arithmetic
• MIPS C compilers produce
addu, addiu, subu

CS61C L7 MIPS Decisions (13) Garcia, Fall 2005 © UCB

Two Logic Instructions
•2 lectures ago we saw add, addi, sub
•Here are 2 more new instructions
•Shift Left: sll $s1,$s2,2 #s1=s2<<2

• Store in $s1 the value from $s2 shifted 2
bits to the left, inserting 0’s on right; << in C

• Before: 0000 0002hex
0000 0000 0000 0000 0000 0000 0000 0010two

• After: 0000 0008hex
0000 0000 0000 0000 0000 0000 0000 1000two

• What arithmetic effect does shift left have?

•Shift Right: srl is opposite shift; >>
CS61C L7 MIPS Decisions (14) Garcia, Fall 2005 © UCB

Loops in C/Assembly (1/3)
•Simple loop in C; A[] is an array of ints

do {
g = g + A[i];
i = i + j;

} while (i != h);

•Rewrite this as:
Loop: g = g + A[i];

i = i + j;
if (i != h) goto Loop;

•Use this mapping:
 g, h, i, j, base of A
$s1, $s2, $s3, $s4, $s5

CS61C L7 MIPS Decisions (15) Garcia, Fall 2005 © UCB

Loops in C/Assembly (2/3)
•Final compiled MIPS code:
Loop: sll $t1,$s3,2 #$t1= 4*i
 add $t1,$t1,$s5 #$t1=addr A
 lw $t1,0($t1) #$t1=A[i]
 add $s1,$s1,$t1 #g=g+A[i]
 add $s3,$s3,$s4 #i=i+j
 bne $s3,$s2,Loop# goto Loop
 # if i!=h

•Original code:
Loop: g = g + A[i];

i = i + j;
if (i != h) goto Loop;

CS61C L7 MIPS Decisions (16) Garcia, Fall 2005 © UCB

Loops in C/Assembly (3/3)
•There are three types of loops in C:

•while
•do… while
•for

•Each can be rewritten as either of the
other two, so the method used in the
previous example can be applied to
while and for loops as well.
•Key Concept: Though there are multiple
ways of writing a loop in MIPS, the key
to decision making is conditional branch

CS61C L7 MIPS Decisions (17) Garcia, Fall 2005 © UCB

Peer Instruction

We want to translate *x = *y into MIPS
(x, y ptrs stored in: $s0 $s1)
A: add $s0, $s1, zero
B: add $s1, $s0, zero
C: lw $s0, 0($s1)
D: lw $s1, 0($s0)
E: lw $t0, 0($s1)
F: sw $t0, 0($s0)
G: lw $s0, 0($t0)
H: sw $s1, 0($t0)

1: A
2: B
3: C
4: D
5: E→F
6: E→G
7: F→E
8: F→H
9: H→G
0: G→H

CS61C L7 MIPS Decisions (18) Garcia, Fall 2005 © UCB

Administrivia

•Project 1 due Friday @ 23:59
•We have a midterm & review time & date

• Review: Sun 2005-10-16 @ 2pm in 10 Evans
• Midterm: Mon 2005-10-17, 5:30-8:30pm here!
• DSP or Conflicts? Email Jeremy

•TAs, anything else?

CS61C L7 MIPS Decisions (19) Garcia, Fall 2005 © UCB

Inequalities in MIPS (1/3)
•Until now, we’ve only tested equalities
(== and != in C). General programs
need to test < and > as well.
•Create a MIPS Inequality Instruction:

• “Set on Less Than”
• Syntax: slt reg1,reg2,reg3
• Meaning:
if (reg2 < reg3)

reg1 = 1;
else reg1 = 0;

• In computereeze, “set” means “set to 1”,
“reset” means “set to 0”.

reg1 = (reg2 < reg3);

Same thing…

CS61C L7 MIPS Decisions (20) Garcia, Fall 2005 © UCB

Inequalities in MIPS (2/3)
• How do we use this? Compile by hand:
if (g < h) goto Less; #g:$s0, h:$s1
• Answer: compiled MIPS code…
slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # goto Less
 # if $t0!=0
 # (if (g<h)) Less:

• Branch if $t0 != 0 (g < h)
• Register $0 always contains the value 0, so bne

and beq often use it for comparison after an slt
instruction.
• A slt bne pair means if(… < …)goto…

CS61C L7 MIPS Decisions (21) Garcia, Fall 2005 © UCB

Inequalities in MIPS (3/3)
•Now, we can implement <, but how do
we implement >, ≤ and ≥ ?
•We could add 3 more instructions,
but:

• MIPS goal: Simpler is Better

•Can we implement ≤ in one or more
instructions using just slt and the
branches?
•What about >?
•What about ≥?

CS61C L7 MIPS Decisions (22) Garcia, Fall 2005 © UCB

Immediates in Inequalities

•There is also an immediate version of
slt to test against constants: slti

• Helpful in for loops

if (g >= 1) goto Loop

 Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
 # $s0<1 (g<1)
beq $t0,$0,Loop # goto Loop
 # if $t0==0

(if (g>=1))

C

M
I
P
S

An slt beq pair means if(… ≥ …)goto…

CS61C L7 MIPS Decisions (23) Garcia, Fall 2005 © UCB

What about unsigned numbers?

•Also unsigned inequality instructions:
sltu, sltiu

…which sets result to 1 or 0 depending
on unsigned comparisons
•What is value of $t0, $t1?
($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex)

 slt $t0, $s0, $s1

sltu $t1, $s0, $s1

CS61C L7 MIPS Decisions (24) Garcia, Fall 2005 © UCB

MIPS Signed vs. Unsigned – diff meanings!

•MIPS Signed v. Unsigned is an
“overloaded” term

•Do/Don't sign extend
(lb, lbu)

•Don't overflow
(addu, addiu, subu, multu, divu)

•Do signed/unsigned compare
(slt, slti/sltu, sltiu)

CS61C L7 MIPS Decisions (25) Garcia, Fall 2005 © UCB

Example: The C Switch Statement (1/3)

• Choose among four alternatives depending
on whether k has the value 0, 1, 2 or 3.
Compile this C code:

switch (k) {
 case 0: f=i+j; break; /* k=0 */
 case 1: f=g+h; break; /* k=1 */
 case 2: f=g–h; break; /* k=2 */
 case 3: f=i–j; break; /* k=3 */
}

CS61C L7 MIPS Decisions (26) Garcia, Fall 2005 © UCB

Example: The C Switch Statement (2/3)

•This is complicated, so simplify.
•Rewrite it as a chain of if-else
statements, which we already know
how to compile:
if(k==0) f=i+j;
 else if(k==1) f=g+h;
 else if(k==2) f=g–h;
 else if(k==3) f=i–j;

•Use this mapping:
 f:$s0, g:$s1, h:$s2,
i:$s3, j:$s4, k:$s5

CS61C L7 MIPS Decisions (27) Garcia, Fall 2005 © UCB

Example: The C Switch Statement (3/3)
• Final compiled MIPS code:
 bne $s5,$0,L1 # branch k!=0
 add $s0,$s3,$s4 #k==0 so f=i+j
 j Exit # end of case so Exit
L1: addi $t0,$s5,-1 # $t0=k-1
 bne $t0,$0,L2 # branch k!=1
 add $s0,$s1,$s2 #k==1 so f=g+h
 j Exit # end of case so Exit
L2: addi $t0,$s5,-2 # $t0=k-2
 bne $t0,$0,L3 # branch k!=2
 sub $s0,$s1,$s2 #k==2 so f=g-h
 j Exit # end of case so Exit
L3: addi $t0,$s5,-3 # $t0=k-3
 bne $t0,$0,Exit # branch k!=3
 sub $s0,$s3,$s4 #k==3 so f=i-j
Exit:

CS61C L7 MIPS Decisions (28) Garcia, Fall 2005 © UCB

What C code properly fills in
the blank in loop below?

Peer Instruction

do {i--;} while(__);

Loop:addi $s0,$s0,-1 # i = i - 1
 slti $t0,$s1,2 # $t0 = (j < 2)
 beq $t0,$0 ,Loop # goto Loop if $t0 == 0
 slt $t0,$s1,$s0 # $t0 = (j < i)
 bne $t0,$0 ,Loop # goto Loop if $t0 != 0

1: j < 2 && j < i
2: j ≥ 2 && j < i
3: j < 2 && j ≥ i
4: j ≥ 2 && j ≥ i
5: j > 2 && j < i
6: j < 2 || j < i
7: j ≥ 2 || j < i
8: j < 2 || j ≥ i
9: j ≥ 2 || j ≥ i
0: j > 2 || j < i

($s0=i, $s1=j)

CS61C L7 MIPS Decisions (29) Garcia, Fall 2005 © UCB

“And in Conclusion…”
• A Decision allows us to decide what to

execute at run-time rather than compile-time.
• C Decisions are made using conditional

statements within if, while, do while, for.
•MIPS Decision making instructions are the

conditional branches: beq and bne.
• In order to help the conditional branches

make decisions concerning inequalities, we
introduce a single instruction: “Set on Less
Than”called slt, slti, sltu, sltiu
• Unsigned add/sub don’t cause overflow
• New MIPS Instructions:
 beq, bne, j, sll, srl

slt, slti, sltu, sltiu
addu, addiu, subu

