Hate EMACS? Love EMACS?
Richard M. Stallman, a famous proponent of open-
source software, the founder of the GNU Project,
and the author of emacs and gcc, will be giving a
speech. We're working on securing some type of
food for the meeting, but we have secured a raffle
prize valued at $100. The raffle will be open to all
those who attend, so be sure to come and bring
your friends!

Brought to you by CalLUG

(UC Berkeley GNU/Linux User Group).
Tuesday, September 20, 6-8 PM in 100 GPB.

Our website with more information can be found at hitp://linux.berkeley.edu/

@ CS61C L6 Intro MIPS ; Load & Store (1) Garcia, Fall 2005 © UCB

CS61C : Machine Structures
Lecture #6 — Intro MIPS; Load & Store
2005_09_1 9 There is one handout

today at the front and
back of the room!

Lecturer PSOE, new dad Dan Garcia

www.cs .berkeley.edu/~ddgarcia

Stolen laptop found! =
Back in March, a laptop
with the sensitive info of 98,000
students was stolen from Sproul. It
was sold to a man in SF who sold it
an Ebay, and was recovered in SC.

CS61C L6 Intro MIPS ; Load & Store (2 1dalert.berkeley.edu/update914.html gapia, Fall 2005 © UCB

Review
e Several techniques for managing heap via
malloc and free: best-, first-, hext-fit

.« 2 t%/pes of memory fragmentation: internal &
external; all suffer from some kind of frag.

- K&R, Slab allocator, Buddy system (adaptive)
e Automatic memory management relieves
programmer from managing memory.
- All require help from language and compiler
- Reference Count: not for circular structures
- Mark and Sweep: complicated and slow, works
- Copying: Divides memory to copy good stuff

* In MIPS Assembly Language:
- One Instruction (simple operation) per line
- Simpler is better, smaller is faster

CS61C L6 Intro MIPS ; Load & Store (3) Garcia, Fall 2005 © UCB

Assembly Variables: Registers (1/4)

* Unlike HLL like C or Java, assembly
cannot use variables

- Why not? Keep Hardware Simple

 Assembly Operands are registers

- limited number of special locations built
directly into the hardware

- operations can only be performed on
these!

* Benefit: Since registers are directly in
hardware, they are very fast
(faster than 1 billionth of a second)

ﬂ CS61C L6 Intro MIPS ; Load & Store (4) Garcia, Fall 2005 © UCB

Assembly Variables: Registers (2/4)

* Drawback: Since registers are in
hardware, there are a predetermined
number of them

- Solution: MIPS code must be very
carefully put together to efficiently use
registers

e 32 registers in MIPS
- Why 32? Smaller is faster

 Each MIPS register is 32 bits wide
- Groups of 32 bits called a word in MIPS

ﬂ CS61C L6 Intro MIPS ; Load & Store (5) Garcia, Fall 2005 © UCB

Assembly Variables: Registers (3/4)

* Registers are numbered from 0 to 31

* Each register can be referred to by
number or name

 Number references:
$0, 81, $2, .. $30, $31

ﬂ CS61C L6 Intro MIPS ; Load & Store (6) Garcia, Fall 2005 © UCB

Assembly Variables: Registers (4/4)

* By convention, each register also has
a hame to make it easier to code

e For now:
$16 - $23 = $s0 - $s7
(correspond to C variables)
$8 - $15 = $t0 - $t7
(correspond to temporary variables)
Later will explain other 16 register names

*In general, use names to make your
code more readable

ﬂ CS61C L6 Intro MIPS ; Load & Store (7) Garcia, Fall 2005 © UCB

C, Java variables vs. registers

In C (and most High Level Languages)
variables declared first and given a type

- Example:
int fahr, celsius;

char a, b, ¢, d, e;

« Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char

variables).

*In Assembly Language, the registers
have no type; operation determines
Q(how register contents are treated

CS61C L6 Intro MIPS ; Load & Store (8) Garcia, Fall 2005 © UCB

Comments in Assembly

 Another way to make your code more
readable: comments!

 Hash (#) is used for MIPS comments

- anything from hash mark to end of line
iIs a comment and will be ignored

 Note: Different from C.
« C comments have format

so they can span many lines

Q CS61C L6 Intro MIPS ; Load & Store (9) Garcia, Fall 2005 © UCB

Assembly Instructions

*In assembly language, each
statement (called an Instruction),
executes exactly one of a short list of
simple commands

e Unlike in C (and most other High
Level Languages), each line o
assembly code contains at most 1
instruction

*Instructions are related to operations
(=, +, -, *,/) in C or Java

* Ok, enough already...gimme my MIPS!

ﬂ CS61C L6 Intro MIPS ; Load & Store (10) Garcia, Fall 2005 © UCB

MIPS Addition and Subtraction (1/4)

e Syntax of Instructions:
1 2,3,4
where:
1) operation by name
2) operand getting result (“destination™)
3) 1st operand for operation (“source1”)
4) 2nd operand for operation (“source2”)

e Syntax is rigid:
- 1 operator, 3 operands
2 . * Why? Keep Hardware simple via regularity

CS61C L6 Intro MIPS ; Load & Store (11) Garcia, Fall 2005 © UCB

Addition and Subtraction of Integers (2/4)

e Addition in Assembly
Example: add $s0,$s1,$s2 (in MIPS)
Equivalentto: a = b + c(in(C)
where MIPS registers $s0,$s1,$s2 are
associated with C variables a, b, c
e Subtraction in Assembly
Example: sub $s3,$s4,$s5 (in MIPS)
Equivalentto: d = e - £(inC)

where MIPS registers $s3,$s4,$s5 are
associated with C variables d, e, £

ﬂ CS61C L6 Intro MIPS ; Load & Store (12) Garcia, Fall 2005 © UCB

Addition and Subtraction of Integers (3/4)

 How do the following C statement?
a=b+c+d- e;

* Break into multiple instructions
add $t0, $sl, $s2
add $t0, $tO0, $s3
sub $s0, $t0, $s4

*Notice: A single line of C may break up
into several lines of MIPS.

* Notice: Everything after the hash mark
Q(on each line is ignored (comments)

CS61C L6 Intro MIPS ; Load & Store (13) Garcia, Fall 2005 © UCB

Addition and Subtraction of Integers (4/4)

e How do we do this?
f=(g+h) - (i+3);

e Use intermediate temporary register
add $t0,S$sl,S$s2
add $tl,$s3,S$s4
sub $s0,$t0,S$tl

ﬂ CS61C L6 Intro MIPS ; Load & Store (14) Garcia, Fall 2005 © UCB

Register Zero

» One particular immediate, the number
zero (0), appears very often in code.

* S0 we define register zero ($0 or
Szero) to always have the value 0; eg

add $s0,$sl1l,S$zero (in MIPS)
f = g (inC)
where MIPS registers $s0,$s1 are
associated with C variables £, g
e defined in hardware, so an instruction

add S$zero, $Szero, $sO

Q(will not do anything!

CS61C L6 Intro MIPS ; Load & Store (15) Garcia, Fall 2005 © UCB

Immediates

e Immediates are numerical constants.

* They appear often in code, so there
are special instructions for them.
 Add Immediate:
addi $s0,$s1,10 (in MIPS)
f =g+ 10 (inC)
where MIPS registers $s0,$s1 are
associated with C variables £, g

e Syntax similar to add instruction,
except that last argument is a number
Q(instead of a register.

CS61C L6 Intro MIPS ; Load & Store (16) Garcia, Fall 2005 © UCB

Immediates

e There is no Subtract Immediate in
MIPS: Why?

* Limit types of operations that can be
done to absolute minimum

- if an operation can be decomposed into
a simpler operation, don’t include it

eaddi ..., - X =subi ..., X=>S0 N0 subi

eaddi $s0,$s1,-10 (in MIPS)
£ =g - 10 (in C)

where MIPS registers $s0,$sl1 are
Q associated with C variables £, g

CS61C L6 Intro MIPS ; Load & Store (17) Garcia, Fall 2005 © UCB

Peer Instruction

C.

74

Types are associated with declaration
in C (normally), but are associated
with instruction (operator) in MIPS.

Since there are only 8 local ($s) and 8
’It\ﬁlrlnbg gst) variables, we can’t write

If p (stored in $s0) were a pointer to an
array of ints, then p++; would be
addi $s0 $s0 1

CS61C L6 Intro MIPS ; Load & Store (18)

or C exprs that contain > 16 vars.

ABC
: FFF
: FFT
: FTF
: FTT
: TFF
: TEFT
: TTF
: TTT

codJonUidWPMNDKR

Garcia, Fall 2005 © UCB

Administrivia

* Project 1 dealine extended until Monday!
- The Autograder is up!

egcc -o foo foo.c

* We shouldn’ t see any a.out files anymore
now that you’ve learned this!

 You should be able to finish labs within
the allotted time.

- If you can’t, ?@et checked off for what you
have, finish home, check off next week

- If this becomes a pattern, think about
working on labs @ home

W2 frozen! (1 week regrades start now)

CS61C L6 Intro MIPS ; Load & Store (19) Garcia, Fall 2005 © UCB

Assembly Operands: Memory

 C variables map onto registers; what
about large data structures like arrays?

*1 of 5 components of a computer:
memory contains such data structures

« But MIPS arithmetic instructions only
operate on registers, never directly on
memory.

» Data transfer instructions transfer data
between registers and memory:

- Memory to register
Q(* Register to memory

CS61C L6 Intro MIPS ; Load & Store (20) Garcia, Fall 2005 © UCB

Anatomy: 5 components of any Computer

Personal Computer

Registers are in the datapath of the

‘ processor; if operands are in memory,
we must transfer them to the
processor to operate on them, and

then transfer back to memory when

done.

Computer
Processor Memory Devices
(Cont_rol \ Input
_Cbrain’) J 1 oi0re (to)

-) .4 ()
Datapath | | _

Registerss—1| oad (from \OUtpm)

These are “data transfer” instructions...

@ CS61C L6 Intro MIPS ; Load & Store (21)

Garcia, Fall 2005 © UCB

Data Transfer: Memory to Reg (1/4)

* To transfer a word of data, we need to
specify two things:

- Register: specify this by # ($0 - $31) or
symbolic name ($s0,..., $t0, ...)

- Memory address: more difficult

- Think of memory as a single one-
dimensional array, so we can address
it simply by supplying a pointer to a
memory address.

- Other times, we want to be able to
offset from this pointer.

Remember: “Load FROM memory”

CS61C L6 Intro MIPS ; Load & Store (22) Garcia, Fall 2005 © UCB

Data Transfer: Memory to Reg (2/4)

* To specify a memory address to copy
from, specify two things:

* A register containing a pointer to memory
- A numerical offset (in bytes)

* The desired memory address is the
sum of these two values.

 Example: 8 ($t0)

- specifies the memory address pointed to
by the value in $t0, plus 8 bytes

ﬂ CS61C L6 Intro MIPS ; Load & Store (23) Garcia, Fall 2005 © UCB

Data Transfer: Memory to Reg (3/4)

e Load Instruction Syntax:
1 2,3(4)
* where
1) operation name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory

 MIPS Instruction Name:

- 1w (meaning Load Word, so 32 bits
or one word are loaded at a time)

ﬂ CS61C L6 Intro MIPS ; Load & Store (24) Garcia, Fall 2005 © UCB

Data Transfer: Memory to Reg (4/4)

Data flow

Example:1lw $t0,12 ($s0)

This instruction will take the pointer in $s0, add
12 bytes to it, and then load the value from the
memory pointed to by this calculated sum into
register $t0

* Notes:
« $s0 Is called the base register
* 12 is called the offset

- offset is generally used in accessing elements
of array or structure: base reg points to
beginning of array or structure

ﬂ CS61C L6 Intro MIPS ; Load & Store (25) Garcia, Fall 2005 © UCB

Data Transfer: Reg to Memory

e Also want to store from register into memory
- Store instruction syntax is identical to Load’s

e MIPS Instruction Name:

sw (meaning Store Word, so 32 bits or one
word are loaded at a time)

Data flow

e Example:sw $t0,12($s0)

This instruction will take the pointer in $s0, add

12 bytes to it, and then store the value from
register $t0 into that memory address

2- Remember: “Store INTO memory”

CS61C L6 Intro MIPS ; Load & Store (26) Garcia, Fall 2005 © UCB

Pointers v. Values

* Key Concept: A register can hold any
32-bit value. That value can be a
(signed) int, an unsigned int, a
pointer (memory address), and so on

oIf you write add $t2,$tl1,$t0
then $t0 and $tl1
better contain values

If you write 1w $t2,0(St0)
then $t0 better contain a pointer

 Don’t mix these up!

ﬂ CS61C L6 Intro MIPS ; Load & Store (27) Garcia, Fall 2005 © UCB

Addressing: Byte vs. word

* Every word in memory has an address,
similar to an index in an array

e Early computers numbered words like
C numbers elements of an array:

Memory [Owory [}] , Memory[2], ...

Called the™“address” of a wor

« Computers needed to access 8-bit
bytes as well as words (4 bytes/word)

e Today machines address memory as
bytes, (i.e.,”"Byte Addressed”) hence 32-
bit (4 byte) word addresses differ by 4

ﬂ eMemory[0], Memory[4], Memory[8], ...

CS61C L6 Intro MIPS ; Load & Store (28) Garcia, Fall 2005 © UCB

Compilation with Memory
e What offset in 1w to selectA[5] in C?

e 4x5=20 to select A[5]: byte v. word

« Compile by hand using registers:
g=h + A[5];

* g: $s1, h: $s2, $s3:base address of A
 1st transfer from memory to register:

lw $t0,20($s3)
- Add 20 to $s3 to select A[5], putinto $tO0
* Next add it to h and place in g
Qdd sl,Ss2,5t0

CS61C L6 Intro MIPS ; Load & Store (29) Garcia, Fall 2005 © UCB

Notes about Memory

* Pitfall: Forgetting that sequential
word addresses in machines with
byte addressing do not differ by 1.

- Many an assembly language
programmer has toiled over errors made
by assuming that the address of the next
word can be found by incrementing the
address In a register by 1 instead of by
the word size In bytes.

- So remember that for both 1w and sw,
the sum of the base address and the
offset must be a multiple of 4 (to be word
aligned)

ﬂ CS61C L6 Intro MIPS ; Load & Store (30) Garcia, Fall 2005 © UCB

More Notes about Memory: Alignment

* MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

Last hex digit

0 . 1:2:95 ofaddressis:

1,5, 9 0rD,,
2,6,A 0rE,
3,7, B,orF,,,

Not
Aligned

e Called Alignment: objects must fall on
address that is multiple of their size.

@ CS61C L6 Intro MIPS ; Load & Store (31) Garcia, Fall 2005 © UCB

Role of Registers vs. Memory

 What if more variables than registers?

- Compiler tries to keep most frequently
used variable in registers

* Less common in memory: spilling

 Why not keep all variables in memory?

- Smaller is faster:
registers are faster than memory

- Registers more versatile:

- MIPS arithmetic instructions can read 2,
operate on them, and write 1 per instruction

- MIPS data transfer only read or write 1
Z operand per instruction, and no operation

CS61C L6 Intro MIPS ; Load & Store (32) Garcia, Fall 2005 © UCB

Loading, Storing bytes 1/2

e In addition to word data transfers
(1w, sw), MIPS has byte data transfers:

*load byte: 1b
e store byte: sb
esame format as 1w, sw

ﬂ CS61C L6 Intro MIPS ; Load & Store (33) Garcia, Fall 2005 © UCB

Loading, Storing bytes 2/2

 What do with other 24 bits in the 32
bit register?

- 1b: sign extends to fill upper 24 bits

XXX XXX XXXKX XXXX XXXX XXXX XZZZ ZZZZ

—
T byte
...IS copied to “sign-extend”

loaded
This bit
 Normally don't want to signh extend chars

 MIPS instruction that doesn’t sign
extend when loading bytes:

Qf load byte unsigned: 1bu

CS61C L6 Intro MIPS ; Load & Store (34) Garcia, Fall 2005 © UCB

“And In conclusion...”

 In MIPS Assembly Language:
* Registers replace C variables
« One Instruction (simple operation) per line
- Simpler is better, smaller is faster
 Memory is byte-addressable, but 1w and sw access
one word at a time.
- One can store & load (signed and unsigned) bytes too
e A pointer (used by 1w & sw) is just a mem address,
SO we can add to it or subtract from it (via offset).

 New Instructions:
add, addi, sub, 1lw, sw, 1lb, sb, 1lbu

 New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t9

ﬂ Zero: $zero
CS61C L6 Intro MIPS ; Load & Store (35) Garcia, Fall 2005 © UCB

