
CS61C L2 Number Representation & Introduction to C (1) Garcia, Fall 2005 © UCB

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #2 – Number Rep & Intro to C

2005-08-31 There is one handout
today at the front and

back of the room!

 In the next 4 yrs,
 time-lapse movies will show

the construction of the new
CITRIS building. Very cool.

Time Lapse! ⇒

www.cs.berkeley.edu/~ddgarcia/tl/
CS61C L2 Number Representation & Introduction to C (2) Garcia, Fall 2005 © UCB

Review
•Continued rapid improvement in computing

• 2X every 2.0 years in memory size;
every 1.5 years in processor speed;
every 1.0 year in disk capacity;

• Moore’s Law enables processor
(2X transistors/chip ~1.5 yrs)

•5 classic components of all computers
 Control Datapath Memory Input Output

•Decimal for human calculations, binary for
computers, hex to write binary more easily

Processor

}

CS61C L2 Number Representation & Introduction to C (3) Garcia, Fall 2005 © UCB

Putting it all in perspective…

“If the automobile had followed the same
development cycle as the computer,

a Rolls-Royce would today cost $100,
get a million miles per gallon,

and explode once a year,
killing everyone inside.”

– Robert X. Cringely

CS61C L2 Number Representation & Introduction to C (4) Garcia, Fall 2005 © UCB

What to do with representations of numbers?

• Just what we do with numbers!
• Add them
• Subtract them
• Multiply them
• Divide them
• Compare them

• Example: 10 + 7 = 17
• …so simple to add in binary that we can

build circuits to do it!
• subtraction just as you would in decimal
• Comparison: How do you tell if X > Y ?

 1 0 1 0

+ 0 1 1 1

1 0 0 0 1

11

CS61C L2 Number Representation & Introduction to C (5) Garcia, Fall 2005 © UCB

Which base do we use?

• Decimal: great for humans, especially when
doing arithmetic
• Hex: if human looking at long strings of

binary numbers, its much easier to convert
to hex and look 4 bits/symbol

• Terrible for arithmetic on paper

• Binary: what computers use;
you will learn how computers do +, -, *, /

• To a computer, numbers always binary
• Regardless of how number is written:
• 32ten == 3210 == 0x20 == 1000002 == 0b100000
• Use subscripts “ten”, “hex”, “two” in book,

slides when might be confusing
CS61C L2 Number Representation & Introduction to C (6) Garcia, Fall 2005 © UCB

BIG IDEA: Bits can represent anything!!

• Characters?
• 26 letters ⇒ 5 bits (25 = 32)
• upper/lower case + punctuation

 ⇒ 7 bits (in 8) (“ASCII”)
• standard code to cover all the world’s

languages ⇒ 8,16,32 bits (“Unicode”)
www.unicode.com

• Logical values?
• 0 ⇒ False, 1 ⇒ True

• colors ? Ex:
• locations / addresses? commands?
•MEMORIZE: N bits ⇔ at most 2N things

Red (00) Green (01) Blue (11)

CS61C L2 Number Representation & Introduction to C (7) Garcia, Fall 2005 © UCB

How to Represent Negative Numbers?

• So far, unsigned numbers
•Obvious solution: define leftmost bit to be sign!

• 0 ⇒ +, 1 ⇒ –
• Rest of bits can be numerical value of number

• Representation called sign and magnitude
•MIPS uses 32-bit integers. +1ten would be:

0000 0000 0000 0000 0000 0000 0000 0001
• And –1ten in sign and magnitude would be:

1000 0000 0000 0000 0000 0000 0000 0001

CS61C L2 Number Representation & Introduction to C (8) Garcia, Fall 2005 © UCB

Shortcomings of sign and magnitude?

•Arithmetic circuit complicated
• Special steps depending whether signs are
the same or not

•Also, two zeros
• 0x00000000 = +0ten
• 0x80000000 = –0ten
• What would two 0s mean for programming?

•Therefore sign and magnitude abandoned

CS61C L2 Number Representation & Introduction to C (9) Garcia, Fall 2005 © UCB

Administrivia
•Look at class website often!
•Homework #1 up now, due Wed @
11:59pm
•Homework #2 up soon, due following
Wed
•There’s a LOT of reading upcoming --
start now.

CS61C L2 Number Representation & Introduction to C (10) Garcia, Fall 2005 © UCB

Another try: complement the bits

•Example: 710 = 001112 -710 = 110002

•Called One’s Complement
•Note: positive numbers have leading 0s,
negative numbers have leadings 1s.

00000 00001 01111...

111111111010000 ...

•What is -00000 ? Answer: 11111
•How many positive numbers in N bits?
•How many negative ones?

CS61C L2 Number Representation & Introduction to C (11) Garcia, Fall 2005 © UCB

Shortcomings of One’s complement?

•Arithmetic still a somewhat complicated.
•Still two zeros

• 0x00000000 = +0ten

• 0xFFFFFFFF = -0ten

•Although used for awhile on some
computer products, one’s complement
was eventually abandoned because
another solution was better.

CS61C L2 Number Representation & Introduction to C (12) Garcia, Fall 2005 © UCB

Standard Negative Number Representation
•What is result for unsigned numbers if tried
to subtract large number from a small one?
• Would try to borrow from string of leading 0s,
so result would have a string of leading 1s

- 3 - 4 ⇒ 00…0011 - 00…0100 = 11…1111
• With no obvious better alternative, pick
representation that made the hardware simple

• As with sign and magnitude,
leading 0s ⇒ positive, leading 1s ⇒ negative

- 000000...xxx is ≥ 0, 111111...xxx is < 0
- except 1…1111 is -1, not -0 (as in sign & mag.)

•This representation is Two’s Complement

CS61C L2 Number Representation & Introduction to C (13) Garcia, Fall 2005 © UCB

2’s Complement Number “line”: N = 5
•2N-1 non-
negatives
•2N-1 negatives
•one zero
•how many
positives?

00000 00001
00010

11111
11110

10000 0111110001

0 1 2
-1

-2

-15 -16 15

.

.

.

.

.

.

-3
11101

-411100

00000 00001 01111...

111111111010000 ...
CS61C L2 Number Representation & Introduction to C (14) Garcia, Fall 2005 © UCB

Two’s Complement for N=32
 0000 ... 0000 0000 0000 0000two = 0ten0000 ... 0000 0000 0000 0001two = 1ten0000 ... 0000 0000 0000 0010two = 2ten. . .

0111 ... 1111 1111 1111 1101two = 2,147,483,645ten0111 ... 1111 1111 1111 1110two = 2,147,483,646ten0111 ... 1111 1111 1111 1111two = 2,147,483,647ten1000 ... 0000 0000 0000 0000two = –2,147,483,648ten1000 ... 0000 0000 0000 0001two = –2,147,483,647ten1000 ... 0000 0000 0000 0010two = –2,147,483,646ten. . .
1111 ... 1111 1111 1111 1101two = –3ten1111 ... 1111 1111 1111 1110two = –2ten1111 ... 1111 1111 1111 1111two = –1ten

•One zero; 1st bit called sign bit
• 1 “extra” negative:no positive 2,147,483,648ten

CS61C L2 Number Representation & Introduction to C (15) Garcia, Fall 2005 © UCB

Two’s Complement Formula
•Can represent positive and negative
numbers in terms of the bit value times a
power of 2:

d31 x -(231) + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20

•Example: 1101two

= 1x-(23) + 1x22 + 0x21 + 1x20

= -23 + 22 + 0 + 20

= -8 + 4 + 0 + 1
= -8 + 5
= -3ten

CS61C L2 Number Representation & Introduction to C (16) Garcia, Fall 2005 © UCB

Two’s Complement shortcut: Negation
•Change every 0 to 1 and 1 to 0 (invert or
complement), then add 1 to the result
•Proof*: Sum of number and its (one’s)
complement must be 111...111two

However, 111...111two= -1ten
Let x’ ⇒ one’s complement representation of x
Then x + x’ = -1 ⇒ x + x’ + 1 = 0 ⇒ x’ + 1 = -x

•Example: -3 to +3 to -3
x : 1111 1111 1111 1111 1111 1111 1111 1101twox’: 0000 0000 0000 0000 0000 0000 0000 0010two+1: 0000 0000 0000 0000 0000 0000 0000 0011two()’: 1111 1111 1111 1111 1111 1111 1111 1100two+1: 1111 1111 1111 1111 1111 1111 1111 1101two

You should be able to do this in your head…

*Check out www.cs.berkeley.edu/~dsw/twos_complement.html

CS61C L2 Number Representation & Introduction to C (17) Garcia, Fall 2005 © UCB

Two’s comp. shortcut: Sign extension

• Convert 2’s complement number rep.
using n bits to more than n bits
• Simply replicate the most significant bit

(sign bit) of smaller to fill new bits
•2’s comp. positive number has infinite 0s
•2’s comp. negative number has infinite 1s
•Binary representation hides leading bits;
sign extension restores some of them
•16-bit -4ten to 32-bit:

1111 1111 1111 1100two

1111 1111 1111 1111 1111 1111 1111 1100two
CS61C L2 Number Representation & Introduction to C (18) Garcia, Fall 2005 © UCB

What if too big?
• Binary bit patterns above are simply

representatives of numbers. Strictly speaking
they are called “numerals”.

• Numbers really have an ∞ number of digits
• with almost all being same (00…0 or 11…1) except

for a few of the rightmost digits
• Just don’t normally show leading digits

• If result of add (or -, *, /) cannot be
represented by these rightmost HW bits,
overflow is said to have occurred.

00000 00001 00010 1111111110
unsigned

CS61C L2 Number Representation & Introduction to C (19) Garcia, Fall 2005 © UCB

Preview: Signed vs. Unsigned Variables

•Java and C declare integers int
• Use two’s complement (signed integer)

•Also, C declaration unsigned int
• Declares a unsigned integer
• Treats 32-bit number as unsigned
integer, so most significant bit is part of
the number, not a sign bit

CS61C L2 Number Representation & Introduction to C (20) Garcia, Fall 2005 © UCB

Number summary...
•We represent “things” in computers as

particular bit patterns: N bits ⇒ 2N

• Decimal for human calculations, binary for
computers, hex to write binary more easily
• 1’s complement - mostly abandoned

• 2’s complement universal in computing:
cannot avoid, so learn

•Overflow: numbers ∞; computers finite,errors!

00000 00001 01111...

111111111010000 ...

00000 00001 01111...

111111111010000 ...

CS61C L2 Number Representation & Introduction to C (21) Garcia, Fall 2005 © UCB

Peer Instruction Question

X = 1111 1111 1111 1111 1111 1111 1111 1100two

Y = 0011 1011 1001 1010 1000 1010 0000 0000two

A. X > Y (if signed)
B. X > Y (if unsigned)
C. An encoding for Babylonians could have 2N

non-zero numbers w/N bits!

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L2 Number Representation & Introduction to C (22) Garcia, Fall 2005 © UCB

Administrivia : Near term
• Upcoming lectures [Monday is a holiday!]

• C pointers and arrays in detail

• Lab tomorrow
• We’ll ask you to sign a document saying you understand

the cheating policy (from Lec #1) and agree to abide by it.

• HW
• HW0 due in discussion next week
• HW1 due next Wed @ 23:59 PST
• HW2 due following Wed @ 23:59 PST

• Reading
• K&R Chapters 1-5 (lots, get started now!); 1st quiz due Sun!

• Get cardkeys from CS main office Soda Hall 3rd fl
• Soda locks doors @ 6:30pm & on weekends

• CSUA Info-session (Th 6-7pm, 310 Soda, “Inst env”)
• Following Th will be “Intro to Emacs” @ 5pm in 310 Soda

CS61C L2 Number Representation & Introduction to C (23) Garcia, Fall 2005 © UCB

Introduction to C

CS61C L2 Number Representation & Introduction to C (24) Garcia, Fall 2005 © UCB

Disclaimer

• Important: You will not learn how to
fully code in C in these lectures!
You’ll still need your C reference for
this course.

• K&R is a great reference.
- But… check online for more sources.

• “JAVA in a Nutshell” – O’Reilly.
- Chapter 2, “How Java Differs from C”.

CS61C L2 Number Representation & Introduction to C (25) Garcia, Fall 2005 © UCB

Compilation : Overview

C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

• Unlike Java which converts to
architecture independent bytecode.

• Unlike most Scheme environments
which interpret the code.

• Generally a 2 part process of compiling
.c files to .o files, then linking the .o files
into executables

CS61C L2 Number Representation & Introduction to C (26) Garcia, Fall 2005 © UCB

Compilation : Advantages

•Great run-time performance:
generally much faster than Scheme or
Java for comparable code (because it
optimizes for a given architecture)
•OK compilation time: enhancements
in compilation procedure (Makefiles)
allow only modified files to be
recompiled

CS61C L2 Number Representation & Introduction to C (27) Garcia, Fall 2005 © UCB

Compilation : Disadvantages

•All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.
•Executable must be rebuilt on each
new system.

• Called “porting your code” to a new
architecture.

•The “change→compile→run [repeat]”
iteration cycle is slow

CS61C L2 Number Representation & Introduction to C (28) Garcia, Fall 2005 © UCB

C vs. Java™ Overview (1/2)

Java
• Object-oriented
(OOP)

• “Methods”
• Class libraries of
data structures

• Automatic
memory
management

C
• No built-in object

abstraction. Data
separate from
methods.

• “Functions”
• C libraries are
lower-level

• Manual
memory
management

• Pointers

CS61C L2 Number Representation & Introduction to C (29) Garcia, Fall 2005 © UCB

C vs. Java™ Overview (2/2)

Java
• High memory
overhead from
class libraries

• Relatively Slow
• Arrays initialize
to zero

• Syntax:
 /* comment */
// comment
System.out.print

C
• Low memory
overhead

• Relatively Fast
• Arrays initialize
to garbage

• Syntax:
/* comment */
printf

CS61C L2 Number Representation & Introduction to C (30) Garcia, Fall 2005 © UCB

C Syntax: Variable Declarations
•Very similar to Java, but with a few
minor but important differences
•All variable declarations must
go before they are used
(at the beginning of the block).
•A variable may be initialized in its
declaration.
•Examples of declarations:
• correct: {

int a = 0, b = 10;

...
• incorrect: for (int i = 0; i < 10; i++)

CS61C L2 Number Representation & Introduction to C (31) Garcia, Fall 2005 © UCB

C Syntax: True or False?

•What evaluates to FALSE in C?
• 0 (integer)
• NULL (pointer: more on this later)
• no such thing as a Boolean

•What evaluates to TRUE in C?
• everything else…
• (same idea as in scheme: only #f is
false, everything else is true!)

CS61C L2 Number Representation & Introduction to C (32) Garcia, Fall 2005 © UCB

C syntax : flow control

• Within a function, remarkably close
to Java constructs in methods (shows
its legacy) in terms of flow control
•if-else
•switch

•while and for
•do-while

CS61C L2 Number Representation & Introduction to C (33) Garcia, Fall 2005 © UCB

C Syntax: main
•To get the main function to accept
arguments, use this:
int main (int argc, char *argv[])

•What does this mean?
•argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument).

- Example: unix% sort myFile
•argv is a pointer to an array containing
the arguments as strings (more on
pointers later).

CS61C L2 Number Representation & Introduction to C (34) Garcia, Fall 2005 © UCB

Address vs. Value

•Consider memory to be a single huge
array:

• Each cell of the array has an address
associated with it.

• Each cell also stores some value
• Do you think they use signed or
unsigned numbers? Negative address?!

•Don’t confuse the address referring to
a memory location with the value
stored in that location.

23 42 101 102 103 104 105 ...

CS61C L2 Number Representation & Introduction to C (35) Garcia, Fall 2005 © UCB

Pointers

•An address refers to a particular
memory location. In other words, it
points to a memory location.
•Pointer: A variable that contains the
address of another variable.

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

CS61C L2 Number Representation & Introduction to C (36) Garcia, Fall 2005 © UCB

Pointers
•How to create a pointer:
& operator: get address of a variable

int *p, x; p ? x ?

x = 3; p ? x 3

p =&x;
p x 3

•How get a value pointed to?
 * “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

Note the “*” gets
used 2 different ways
in this example. In
the declaration to
indicate that p is
going to be a pointer,
and in the printf to
get the value pointed
to by p.

CS61C L2 Number Representation & Introduction to C (37) Garcia, Fall 2005 © UCB

Pointers
•How to change a variable pointed to?

• Use dereference * operator on left of =

p x 5*p = 5;

p x 3

CS61C L2 Number Representation & Introduction to C (38) Garcia, Fall 2005 © UCB

Pointers and Parameter Passing
•Java and C pass a parameter “by value”

• procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original
 void addOne (int x) {

 x = x + 1;
}

 int y = 3;
 addOne(y);

•y is still = 3

CS61C L2 Number Representation & Introduction to C (39) Garcia, Fall 2005 © UCB

Pointers and Parameter Passing
•How to get a function to change a value?
 void addOne (int *p) {

*p = *p + 1;
}
 int y = 3;

 addOne(&y);

•y is now = 4

CS61C L2 Number Representation & Introduction to C (40) Garcia, Fall 2005 © UCB

Pointers

•Normally a pointer can only point to
one type (int, char, a struct, etc.).
•void * is a type that can point to
anything (generic pointer)

• Use sparingly to help avoid program
bugs… and security issues… and a lot
of other bad things!

CS61C L2 Number Representation & Introduction to C (41) Garcia, Fall 2005 © UCB

Peer Instruction Question

void main(); {
 int *p, x=5, y; // init
 y = *(p = &x) + 10;
 int z;
 flip-sign(p);
 printf("x=%d,y=%d,p=%d\n",x,y,p);
}
flip-sign(int *n){*n = -(*n)}

How many errors?

#Errors
 1
 2
 3
 4
 5
 6
 7
 8
 9
(1)0

CS61C L2 Number Representation & Introduction to C (43) Garcia, Fall 2005 © UCB

And in conclusion…

•All declarations go at the beginning of
each function.
•Only 0 and NULL evaluate to FALSE.
•All data is in memory. Each memory
location has an address to use to
refer to it and a value stored in it.
•A pointer is a C version of the
address.

• * “follows” a pointer to its value
• & gets the address of a value

