inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture #1 – Number Representation

2005-08-29

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Great book ⇒ The Universal History of Numbers

by Georges Ifrah

Garcia, Fall 2005 © UCB

"I stand on the shoulders of giants..."

Thanks to these talented folks (& many others) whose contributions have helped make 61C a really tremendous course!

CS61C L01 Introduction + Numbers (2)

Where does CS61C fit in?

http://hkn.eecs.berkeley.edu/student/cs-prereq-chart1.gif

CS61C L01 Introduction + Numbers (3)

Garcia, Fall 2005 © UCB

Are Computers Smart?

• To a programmer:

- Very complex operations / functions:
 - (map (lambda (x) (* x x)) (1 2 3 4))
- Automatic memory management:

- List l = new List;

- "Basic" structures:
 - Integers, floats, characters, plus, minus, print commands

Are Computers Smart?

- In real life:
 - Only a handful of operations:
 - {and, or, not}
 - <u>No</u> memory management.
 - Only 2 values:
 - {0, 1} or {low, high} or {off, on}

What are "Machine Structures"?

* Coordination of many

levels (layers) of abstraction

61C Levels of Representation

Garcia, Fall 2005 © UCB

Anatomy: 5 components of any Computer

Overview of Physical Implementations

The hardware out of which we make systems.

- Integrated Circuits (ICs)
 - Combinational logic circuits, memory elements, analog interfaces.
- Printed Circuits (PC) boards
 - substrate for ICs and interconnection, distribution of CLK, Vdd, and GND signals, heat dissipation.
- Power Supplies
 - Converts line AC voltage to regulated DC low voltage levels.
- Chassis (rack, card case, ...)
 - holds boards, power supply, provides physical interface to user or other systems.

Integrated Circuits (2003 state-of-the-art)

Bare Die

Chip in Package

- **Primarily Crystalline Silicon**
- 1mm 25mm on a side
- 2003 feature size ~ 0.13μ m = 0.13 x 10⁻⁶ m
- 100 400M transistors
- (25 100M "logic gates")
- 3 10 conductive layers
- "CMOS" (complementary metal oxide semiconductor) - most cómmon.
- **Package provides:** •
 - spreading of chip-level signal paths to board-level
 - heat dissipation.
- Ceramic or plastic with gold wires.

Printed Circuit Boards

- fiberglass or ceramic
- 1-20 conductive layers
- 1-20in on a side
- IC packages are soldered down.

Technology Trends: Memory Capacity (Single-Chip DRAM)

Garcia, Fall 2005 © UCB

Technology Trends: Microprocessor Complexity

Technology Trends: Processor Performance

We'll talk about processor performance later on...

CS61C L01 Introduction + Numbers (14)

Computer Technology - Dramatic Change!

- Memory
 - DRAM capacity: 2x / 2 years (since '96); 64x size improvement in last decade.
- Processor
 - Speed 2x / 1.5 years (since '85); **100X performance in last decade.**
- Disk
 - Capacity: 2x / 1 year (since '97) 250X size in last decade.

Computer Technology - Dramatic Change!

We'll see that Kilo, Mega, etc. are incorrect later!

- State-of-the-art PC when you graduate: (at least...)
 - Processor clock speed: 500
 - Memory capacity:

- 5000 MegaHertz (5.0 GigaHertz)
- 8000 MegaBytes (8.0 GigaBytes)
- Disk capacity: 2000 GigaBytes (2.0 TeraBytes)
- New units! Mega => Giga, Giga => Tera

(Tera => Peta, Peta => Exa, Exa => Zetta Zetta => Yotta = 10²⁴)

CS61C: So what's in it for me?

- Learn some of the big ideas in CS & engineering:
 - 5 Classic components of a Computer
 - Data can be anything (integers, floating point, characters): a program determines what it is
 - Stored program concept: instructions just data
 - Principle of Locality, exploited via a memory hierarchy (cache)
 - Greater performance by exploiting parallelism
 - Principle of abstraction, used to build systems as layers
 - Compilation v. interpretation thru system layers
 - Principles/Pitfalls of Performance Measurement

Others Skills learned in 61C

Learning C

- If you know one, you should be able to learn another programming language largely on your own
- Given that you know C++ or Java, should be easy to pick up their ancestor, C

Assembly Language Programming

 This is a skill you will pick up, as a side effect of understanding the Big Ideas

Hardware design

- We think of hardware at the abstract level, with only a little bit of physical logic to give things perspective
- CS 150, 152 teach this

Course Lecture Outline

- Number representations
- C-Language (basics + pointers)
- Memory management
- Assembly Programming
- Floating Point
- make-ing an Executable
- Logic Design
- Introduction to Logisim
- CPU organization
- Pipelining
- Caches
- Virtual Memory
- I/O
- Disks, Networks
- Performance
- Advanced Topic

"Always in motion is the future..."

Our schedule may change slightly depending on some factors. This includes lectures, assignments & labs...

- Required: *Computer Organization and Design: The Hardware/Software Interface, <u>Third Edition</u>, Patterson and Hennessy (COD). <i>The second edition is far inferior, and is not suggested.*
- Required: *The C Programming Language*, Kernighan and Ritchie (K&R), 2nd edition
- Reading assignments on web page

Attention over time!

Garcia, Fall 2005 © UCB

t

Attention over time!

Garcia, Fall 2005 © UCB

Tried-and-True Technique: Peer Instruction

- Increase real-time learning in lecture, test understanding of concepts vs. details
- As complete a "segment" ask multiple choice question
 - 1-2 minutes to decide yourself
 - 3 minutes in pairs/triples to reach consensus. Teach others!
 - 5-7 minute discussion of answers, questions, clarifications
- You'll get transmitters from ASUC bookstore (or Neds, (but they're not in yet!)

CS61C L01 Introduction + Numbers (24)

Peer Instruction

- Read textbook
 - Reduces examples have to do in class
 - Get more from lecture (also good advice)
- Fill out 3-question Web Form on reading (released mondays, due every friday before lecture)
 - Graded for effort, not correctness...
 - This counts for "E"ffort in EPA score

Weekly Schedule

We are having discussion, lab and office hours this week...

2005	Monday, August 29,	Tuesday, August 30,	Wednesday, August 31,	Thursday, September 1,	Friday, September 2,
9 AM					
				(9:00 AM	1
				11 Lab @ 271 Soda	
10 AM					
		10:00 AM			
		TIT DIS @ ST Evans			
11 AM			_		
		11:00 AM		11:00 AM	11:00 AM
		112 Dis @ 425 Latimer		12 Lab @ 271 Soda	17 Lab @ 271 Soda
Noon					
			12:00 PM		
			117 Dis @ 310 Soda		
1 PM					
				1:00 PM	
				13 Lab @ 271 Soda	-
2 PM					-
2 110		2:00 PM			
		113 Dis @ 81 Evans			1
3 PM					
3 100		3:00 PM		3:00 PM	
		114 Dis @ C320 CHEIT		14 Lab @ 271 Soda	
4 014					
4 P.M					
F 1944					
3 PM					
	5-30 PM		(5-30 PM		
C 014	Lec 155 Dwinelle		Lec 155 Dwinelle		
6 PM					
Z PM					

Garcia, Fall 2005 © UCB

Homeworks, Labs and Projects

- Lab exercises (every wk; due in that lab session unless extension given by TA) – extra point if you finish in 1st hour!
- Homework exercises (~ every week; (HW 0) out now, due in section <u>next week</u>)
- Projects (every 2 to 3 weeks)
- All exercises, reading, homeworks, projects on course web page
- We will DROP your lowest HW, Lab!

2 Course Exams

- <u>Midterm: Monday 2005-10-17 HERE 5:30-8:30</u>
 - Give 3 hours for 2 hour exam (start in class)
 - One "review sheet" allowed
 - Review session Sun beforehand, time/place TBA
- Final: Sat 2005-12-17 @ 12:30-3:30pm (grp 14)
 - You can *clobber* your midterm grade!
 - (students last semester LOVED this...)

Your final grade

• Grading (could change before 1st midterm)

- 15pts = 5% Labs
- 30pts = 10% Homework
- 60pts = 20% Projects
- 75pts = 25% Midterm* [can be clobbered by Final]
- 120pts = 40% Final
- + Extra credit for EPA. What's EPA?
- Grade distributions
 - Similar to CS61B, in the absolute scale.
 - Perfect score is 300 points. 10-20-10 for A+, A, A-
 - Similar for Bs and Cs (40 pts per letter-grade)
 - ... C+, C, C-, D, F (No D+ or D- distinction)
 - Differs: No F will be given if all-but-one {hw, lab}, all projects submitted and all exams taken

We'll "ooch" grades up but never down

Extra Credit: EPA!

- Effort
 - Attending Dan's and TA's office hours, completing all assignments, turning in HW0, doing reading quizzes
- Participation
 - Attending lecture and voting using the PRS system
 - Asking great questions in discussion and lecture and making it more interactive
- Altruism
 - Helping others in lab or on the newsgroup
- EPA! extra credit points have the potential to bump students up to the next grade level! (but actual EPA! scores are internal)

Course Problems...Cheating

- What is cheating?
 - <u>Studying</u> together in groups is <u>encouraged.</u>
 - Turned-in work must be <u>completely</u> your own.
 - Common examples of cheating: running out of time on a assignment and then pick up output, take homework from box and copy, person asks to borrow solution "just to take a look", copying an exam question, ...
 - You're not allowed to work on homework/projects/exams with <u>anyone</u> (other than ask Qs walking out of lecture)
 - Both "giver" and "receiver" are equally culpable
- Cheating points: negative points for that assignment / project / exam (e.g., if it's worth 10 pts, you get -10) In most cases, F in the course.
- <u>Every offense</u> will be referred to the Office of Student Judicial Affairs.

www.eecs.berkeley.edu/Policies/acad.dis.shtml

CS61C L01 Introduction + Numbers (31)

- Cesar Chavez Center (on Lower Sproul)
- The SLC will offer directed study groups for students CS61C.
- They will also offer Drop-in tutoring support for about 20 hours each week.
- Most of these hours will be conducted by paid tutorial staff, but these will also be supplemented by students who are receiving academic credit for tutoring.

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:

3271 =

$(3x10^3) + (2x10^2) + (7x10^1) + (1x10^0)$

Numbers: positional notation

- Number Base $B \Rightarrow B$ symbols per digit:
 - Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0, 1
- Number representation:
 - $d_{31}d_{30} \dots d_1d_0$ is a 32 digit number
 - value = $d_{31} \times B^{31} + d_{30} \times B^{30} + ... + d_1 \times B^1 + d_0 \times B^0$
- Binary: 0,1 (In binary digits called "bits") • 0b11010 = $1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ = 16 + 8 + 2 #s often written = 26
- **0b...** Here 5 digit binary # turns into a 2 digit decimal #
 - Can we find a base that converts to binary easily?

Hexadecimal Numbers: Base 16

- Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Normal digits + 6 more from the alphabet
 - In C, written as 0x... (e.g., 0xFAB5)
- Conversion: Binary Hex
 - 1 hex digit represents 16 decimal values
 - 4 binary digits represent 16 decimal values
 - \Rightarrow 1 hex digit replaces 4 binary digits
- One hex digit is a "nibble". Two is a "byte"
- Example:

Decimal vs. Hexadecimal vs. Binary

Examples:
1010 1100 0011 (binary) = 0xAC3
10111 (binary) = 0001 0111 (binary) = 0x17
0x3F9 = 11 1111 1001 (binary)
How do we convert between

hex and Decimal?

MEMORIZE!

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

physics.nist.gov/cuu/Units/binary.html Common use prefixes (all SI, except K [= k in SI])

Name	Abbr	Factor	SI size
Kilo	K	2 ¹⁰ = 1,024	$10^3 = 1,000$
Mega	Μ	2 ²⁰ = 1,048,576	$10^6 = 1,000,000$
Giga	G	2 ³⁰ = 1,073,741,824	$10^9 = 1,000,000,000$
Tera	Т	2 ⁴⁰ = 1,099,511,627,776	10 ¹² = 1,000,000,000,000
Peta	Р	2 ⁵⁰ = 1,125,899,906,842,624	10 ¹⁵ = 1,000,000,000,000,000
Exa	E	2 ⁶⁰ = 1,152,921,504,606,846,976	10 ¹⁸ = 1,000,000,000,000,000,000
Zetta	Z	2 ⁷⁰ = 1,180,591,620,717,411,303,424	$10^{21} = 1,000,000,000,000,000,000,000$
Yotta	Y	2 ⁸⁰ = 1,208,925,819,614,629,174,706,176	$10^{24} = 1,000,000,000,000,000,000,000,000$

- Confusing! Common usage of "kilobyte" means 1024 bytes, but the "correct" SI value is 1000 bytes
- Hard Disk manufacturers & Telecommunications are the only computing groups that use SI factors, so what is advertised as a 30 GB drive will actually only hold about 28 x 2³⁰ bytes, and a 1 Mbit/s connection transfers 10⁶ bps.

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

en.wikipedia.org/wiki/Binary_prefix

• New IEC Standard Prefixes [only to exbi officially]

Name	Abbr	Factor
kibi	Ki	2 ¹⁰ = 1,024
mebi	Mi	2 ²⁰ = 1,048,576
gibi	Gi	2 ³⁰ = 1,073,741,824
tebi	Ti	2 ⁴⁰ = 1,099,511,627,776
pebi	Pi	2 ⁵⁰ = 1,125,899,906,842,624
exbi	Ei	2 ⁶⁰ = 1,152,921,504,606,846,976
zebi	Zi	2 ⁷⁰ = 1,180,591,620,717,411,303,424
yobi	Yi	2 ⁸⁰ = 1,208,925,819,614,629,174,706,176

As of this writing, this proposal has yet to gain widespread use...

- International Electrotechnical Commission (IEC) in 1999 introduced these to specify binary quantities.
 - Names come from shortened versions of the original SI prefixes (same pronunciation) and *bi* is short for "binary", but pronounced "bee" :-(

 Now SI prefixes only have their base-10 meaning and never have a base-2 meaning.

CS61C L01 Introduction + Numbers (38)

The way to remember #s

- What is 2^{34} ? How many bits addresses (I.e., what's ceil $log_2 = lg of$) 2.5 TiB?
- Answer! 2^{XY} means...

 $X=0 \implies \cdots$ $Y=0 \Rightarrow 1$ $X=1 \Rightarrow kibi \sim 10^3 Y=1 \Rightarrow 2$ $X=2 \implies mebi \sim 10^6 Y=2 \implies 4$ $X=3 \Rightarrow$ gibi ~10⁹ $Y=3 \Rightarrow 8$ $X=4 \implies tebi \sim 10^{12} Y=4 \implies 16$ $X=5 \implies \text{tebi} \sim 10^{15} \quad Y=5 \implies 32$ $X=6 \implies exbi \sim 10^{18} Y=6 \implies 64$ $X=7 \implies zebi \sim 10^{21} Y=7 \implies 128$ $X=8 \Rightarrow$ vobi ~10²⁴ $Y=8 \Rightarrow$ 256 $Y=9 \implies 512$ MFMORIZE!

Summary

Continued rapid improvement in computing

- 2X every 2.0 years in memory size; every 1.5 years in processor speed; every 1.0 year in disk capacity;
- Moore's Law enables processor (2X transistors/chip ~1.5 yrs)
- 5 classic components of all computers

Control Datapath Memory Input Output

• Decimal for human calculations, binary for computers, hex to write binary more easily

CS61C L01 Introduction + Numbers (40)