

CS61C: So what's in it for me?

· Learn some of the big ideas in CS & engineering:

Garcia, Fall 2005 © UCB

Garcia, Fall 2005 @ UCB

- · 5 Classic components of a Computer
- · Data can be anything (integers, floating point, characters): a program determines what it is
- · Stored program concept: instructions just data
- · Principle of Locality, exploited via a memory hierarchy (cache)
- · Greater performance by exploiting parallelism
- · Principle of abstraction, used to build systems as layers
- · Compilation v. interpretation thru system layers
- Principles/Pitfalls of Performance Measurement

Course Lecture Outline

· Number representations C-Language (basics + pointers) Memory management

Assembly Programming

 Floating Point • make-ing an Executable

 Logic Design Introduction to Logisim CPU organization Pipelining Caches Virtual Memory

· Disks, Networks Performance

Advanced Topic

• I/O

al

CS61C L01 Introduction + Numbers (17) Garcia, Fall 2005 © UCB

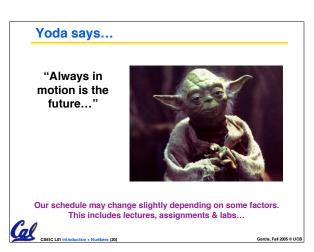
Others Skills learned in 61C

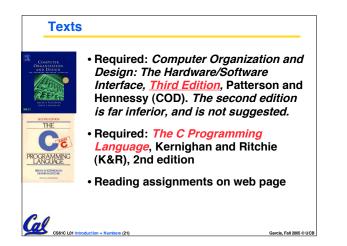
Learning C

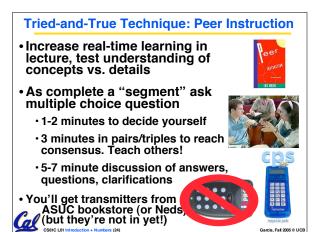
- If you know one, you should be able to learn another programming language largely on your own
- Given that you know C++ or Java, should be easy to pick up their ancestor, C

Assembly Language Programming

· This is a skill you will pick up, as a side effect of understanding the Big Ideas

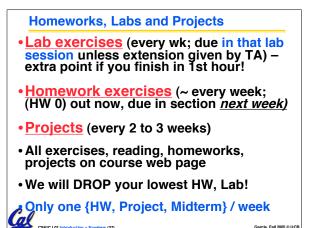

Hardware design


 We think of hardware at the abstract level, with only a little bit of physical logic to give things perspective

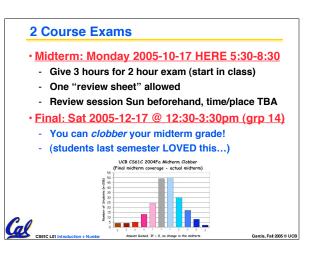

Garcia, Fall 2005 © UCB

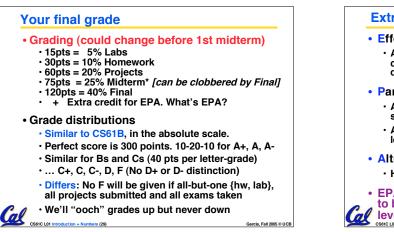
CS 150, 152 teach this

al CS61C L01 Introduction + Numbers (18)



Peer Instruction Read textbook Reduces examples have to do in class · Get more from lecture (also good advice) Fill out 3-question Web Form on reading (released mondays, due every friday before lecture) · Graded for effort, not correctness... This counts for "E"ffort in EPA score CS61C L01 Introduction + Numbers (25) Garcia, Fall 2005 © UCB





Garcia, Fall 2005 @ UCB

CS61C L01

ers (27)

Garcia, Fall 2005 © UCB

Garcia, Fall 2005 @ UCB

We'll "ooch" grades up but never down

Extra Credit: EPA!

Effort

· Attending Dan's and TA's office hours, completing all assignments, turning in HW0, doing reading quizzes

Participation

- · Attending lecture and voting using the PRS system
- · Asking great questions in discussion and lecture and making it more interactive

Altruism

CS61C L01 Introduction + Num

· Helping others in lab or on the newsgroup

 EPA! extra credit points have the potential to bump students up to the next grade level! (but actual EPA! scores are internal) al 2005 © UCB

Course Problems...Cheating

· What is cheating?

duction + Num

- <u>Studying</u> together in groups is <u>encouraged.</u>
- Turned-in work must be completely your own.
- Common examples of cheating: running out of time on a assignment and then pick up output, take homework from box and copy, person asks to borrow solution "just to take a look", copying an exam question, ...
- · You're not allowed to work on homework/projects/exams with anyone (other than ask Qs walking out of lecture) · Both "giver" and "receiver" are equally culpable
- · Cheating points: negative points for that assignment / project / exam (e.g., if it's worth 10 pts, you get -10) In most cases, F in the course.
- Every offense will be referred to the Office of Student Judicial Affairs.

www.eecs.berkeley.edu/Policies/acad.dis.shtml CS61C L01 Int Garcia, Fall 2005 © UCB ers (31)

Student Learning Center (SLC)

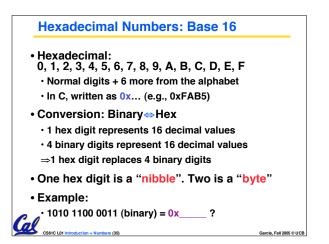
- Cesar Chavez Center (on Lower Sproul)
- The SLC will offer directed study groups for students CS61C.
- They will also offer Drop-in tutoring support for about 20 hours each week.
- Most of these hours will be conducted by paid tutorial staff, but these will also be supplemented by students who are receiving academic credit for tutoring.

Garcia, Fall 2005 © UCB

Numbers: positional notation Number Base B ⇒ B symbols per digit: • Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0, 1 Number representation: • d₃₁d₃₀ ... d₁d₀ is a 32 digit number • value = $d_{31} \times B^{31} + d_{30} \times B^{30} + ... + d_1 \times B^1 + d_0 \times B^0$ • Binary: 0,1 (In binary digits called "bits") $\rightarrow 0b11010 = 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0$ ☐ = 16 + 8 + 2 #s often written = 26 0b... • Here 5 digit binary # turns into a 2 digit decimal # · Can we find a base that converts to binary easily? Garcia, Fall 2005 © UCB

Decimal Numbers: Base 10

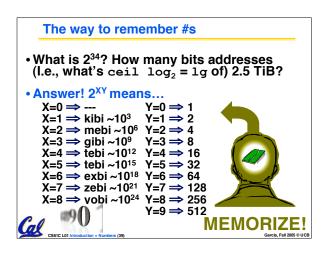
Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

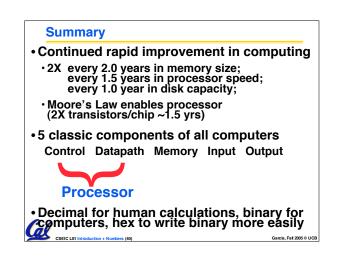

Example:

3271 =

 $(3x10^3) + (2x10^2) + (7x10^1) + (1x10^0)$

CS6<u>1C L01 Introduction + Num</u>


al



Decimal vs. Hexadecimal vs. Binary					
Examples:	00 0	0000			
1010 1100 0011 (binary)	01 1 02 2 03 3	0001 0010 0011			
= 0xAC3	04 4	0100			
10111 (binary) = 0001 0111 (binary)	05 5 06 6	0101 0110 0111			
= 0x17	077 088 099	1000 1001			
0x3F9 = 11 1111 1001 (binary)	10 A	1010			
How do we convert between	11 B 12 C	1011 1100			
hex and Decimal?	13 D 14 E	1101 1110			
Cal MEMORIZE	15 F	1111			
CS61C L01 Introduction + Numbers (36)		Garcia, Fall 2005 © UC			

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta physics.nist.gov/cuu/Units/binary.html							
Name	Common use prefixes (all SI, except K [= k in SI])						
Kilo	K	2 ¹⁰ = 1.024	10 ³ = 1,000				
Mega	м	2 ²⁰ = 1,048,576	10 ⁶ = 1,000,000				
Giga	G	230 = 1,073,741,824	10 ⁹ = 1,000,000,000				
Tera	т	240 = 1,099,511,627,776	1012 = 1,000,000,000,000				
Peta	Р	2 ⁵⁰ = 1,125,899,906,842,624	1015 = 1,000,000,000,000,000				
Exa	E	260 = 1,152,921,504,606,846,976	1018 = 1,000,000,000,000,000,000				
Zetta	z	2 ⁷⁰ = 1,180,591,620,717,411,303,424	10 ²¹ = 1,000,000,000,000,000,000,000				
Yotta	Y	280 = 1,208,925,819,614,629,174,706,176	1024 = 1,000,000,000,000,000,000,000,000				
•	 Confusing! Common usage of "kilobyte" means 1024 bytes, but the "correct" SI value is 1000 bytes Hard Disk manufacturers & Telecommunications are the only computing groups that use SI factors, so what is advertised as a 30 GB drive will actually only hold about 28 x 2³⁰ bytes, and a 1 Mbit/s connection 						
	hold about 28 x 2 ³⁰ bytes, and a 1 Mbit/s connection transfers 10 ⁶ bps.						

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi							
en.wikipedia.org/wiki/Binary_prefix							
 New IEC Standard Prefixes [only to exbi officially] 							
	Name	Abbr	Factor				
	kibi	Ki	210 = 1,024	As of this			
	mebi	Mi	2 ²⁰ = 1,048,576	writing, this			
	gibi	Gi	2 ³⁰ = 1,073,741,824	proposal has			
	tebi	Ti	2 ⁴⁰ = 1,099,511,627,776	yet to gain			
	pebi	Pi	250 = 1,125,899,906,842,624	· ·			
	exbi	Ei	260 = 1,152,921,504,606,846,976	widespread			
	zebi	Zi	2 ⁷⁰ = 1,180,591,620,717,411,303,424	use			
	yobi	Yi	280 = 1,208,925,819,614,629,174,706,176				
 International Electrotechnical Commission (IEC) in 1999 introduced these to specify binary quantities. 							
 Names come from shortened versions of the original SI prefixes (same pronunciation) and <i>bi</i> is short for "binary", but pronounced "bee" :-(
• Now SI prefixes only have their base-10 meaning and never have a base-2 meaning.							
	CS61C L01 Ir	ntroduction	+ Numbers (38)	Garcia, Fall 2005 © UCB			

