
CS61C Homework 3 - An HTML parser

Due Wednesday, September 22nd, at 11:59pm

September 21, 2004

1 Introduction

Your job is to finish a simple HTML parser whose skele-
ton is provided to you. An HTML parser receives an
HTML file, counts the number of occurrences of each
tag name, and then returns an alphabetically ordered
list of the tag names, alongside its frequency.

2 HTML Primer (All You Need
Know For This Project)

This section discusses the HTML language. You can
skip it if you know what’s it about.

HTML stands for HyperText Markup Lan-

guage. [RLJ98]. It is a markup language, which for
now you can compare to a text file with extra stuff.
This extra stuff includes, among others, the ability to
specify rich text format (color, italics, etc.), add multi-
media elements (songs, videos, etc.), and include links
to other files. All this additions are specified alongside
the text in the file.

The way to include these extra elements in an HTML
file, is by using HTML tags. Tags are pieces of text
that are not to be interpreted as text, but instead as
markers that something is happening. HTML tags are
always enclosed in angle-brackets (< and >).

For example, the HTML string table represents a
chunk of text with the word “table.” The HTML
string <table>, however, represents an occurrence of
an HTML tag, whose tag name is table. Such tag is
used to mark the beginning of a table.

While there are lots of documents that will help you
understand HTML [Mey95], this primer should cover
what you would need to finish this homework.

2.1 Tag Qualifiers

Some tags can have qualifiers that refine the semantics
of a tag name. For example, you may want to specify
some features about the table you are defining, namely
whether the table should be printed with a border or
not. In that case, HTML permits inserting the name
of the qualifier and the value of the qualifier between

the tag name and the > character. To mark that a
table must have border, the correct HTML tag will be
<table border=1>, where the tag name is “table,” and
there is a “border” qualifier with the value 1. You can
add several name=value qualifiers, separating them with
blanks.

Note that, with the exception of HTML tag markers,
characters < and > are illegal in HTML files, either
as text or inside other tags. In case you are curious,
if you want to add < or > as text, you have to use
escaped sequencies: the HTML strings < or >,
respectively.

Therefore, it is pretty easy to know where a tag starts
(whenever you see the < character) and when it ends
(whenever you see a > character).

2.2 Tag Pairs

Some tags occur in begin-end pairs. For example, when
describing a table, we want to mark the end of the ta-
ble, as well as the beginning. Pair tags are in the form
<tag> ... </tag>, where <tag> indicates the begin-
ning of a tag pair, and </tag> indicates the end.

In the table example, you will mark the end of a
table by using the HTML string </table>. For this
homework’s purposes, end tags must be considered as
equivalent to its correspondent begin tag (i.e., <table>
and </table> must be considered as 2 occurrences of
the table tag.)

2.3 HTML Parser Finite State Machine

The HTML parser that we want you to write can be
described using the Finite State Machine (FSM) in
Figure 1.

If you know what an FSM is, you can skip this section.

An FSM [FC00] is “an imaginary machine that is used
to study and design systems that recognize and identify
patterns.” In our case, the patterns are the HTML tags
and the angle brackets that surround them.

An FSM is represented as a series of states (repre-
sented by circles in our figure) and transitions among
the states (represented as arrows between the states).

1

and exit

start

no ’<’

’<’

gettag_empty

blank or ’/’

’>’ / print "empty tag"

gettag

valid tag char / append to tag

waitforend

no ’>’

’>’ / insert tag valid tag char / append to tag

anything else

’>’ / insert tag

anything else

Figure 1: HTML Parser FSM

In our case, we have 4 states, named “start,” “get-
tag empty,” “gettag,” and “waitforend,” and 11 tran-
sitions.

At any moment, the FSM is in one of the states, and
only one. For example, our FSM starts in the “start”
state. The FSM receives a string of symbols as input.
These symbols (which in our case are the ASCII char-
acters that compose the HTML file we are parsing) are
read by the FSM one by one, and each one causes a
transition between 2 states. Note that an FSM must
explicit its behavior for any input and any state.

As an example, let’s assume we are at the “start”
state. We see that 2 arrows come from this state. The
one in the right occurs when the next character in the
file is ’<’. In that case, our FSM moves from the “start”
state to the “gettag” one. The one in the left occurs
when the next character is anything but ’<’. If our FSM
machine is in the “start” state, and the next character
is anything but ’<’, the state will move to. . . “start.”
(There is no reason why a transition to the same state
is not OK.)

Some transitions actually fire actions alongside state
transition. In our case, please take a look at any of
the 5 transitions that point to the “start” or “gettag”
states. In these transitions, the character that fires them

is appended with an action that must be carried out
when taking the transition. The three valid actions of
our FSM are “insert a tag”, “print ”empty tag””, and
“append (character) to tag.”

This FSM defines the behavior of the HTML parser.
You start in the “start” state, and keep reading charac-
ters until you find a tag delimiter (’<’ character). This
takes the FSM to the “gettag empty” state.

Once in “gettag empty”, the FSM keeps reading
blanks (remember that blanks are valid characters be-
tween a tag delimiter and the tag name), until it finds a
valid tag character (a-z, A-Z, ’-’, and ’ ’), which moves
it to the “gettag” state. The only exception is if it finds
’>’ first, in which case the FSM detected an empty tag.

In the “gettag” state, the FSM keeps reading valid tag
characters until it reads something that is not a valid
tag character. Then, if what the FSM gets is a tag end
(’>’ character), it inserts the tag just read, and moves
back to the “start” state. If it’s anything else, the FSM
moves to the “waitforend” state, where it waits until
receiving a ’>’ character.

The way to implement an FSM is the following: Your
program will have an fsm_state variable that will store
the current state of the FSM. The program will read its
input, one character at a time. Every character is to be

2

interpreted depending on the FSM current state. For
example, let’s assume your program reads the character
’a’.

• If the current state is “start” or “waitforend,” your
program won’t do anything with it, and will remain
in the same state

• If the current state is “gettag empty”, it will ap-
pend the character to the current tag, and move to
state “gettag”

• If the current state is “gettag”, it will append the
character to the current tag, and remain in the
same state

When the FSM action requires your program to in-
sert a tag, it will do so by calling a function called
tag_insert, and then will clean up the tag, so that
the next tag starts from scratch.
tag_insert is used to manage a dynamic structure

that stores the number of times a tag appears in the
HTML file. The function will check whether the tag
has already been inserted, in which case it will update
the tag counter. Otherwise, it will add a new entry for
the tag (this should smell enough like using malloc).

Note that this dynamic structure must be able to
grow when you find new tags, so you don’t want to use
an structure with a bounded number of supported tags.
A binary tree is a good choice. You can also allocate
a structure with space for a fixed amount of tags, and
then make it grow when needed.

3 Your Task

Your task is to complete the file html_parser.c, which
parses an HTML file, and builds a dynamic structure
that stores the number of times a tag appears in the
HTML file.

After finishing parsing the input file, your program
should dump the contents of the dynamic structure, and
report the most popular tag. More concretely, it must
print:

1. A list of entries (one per line), composed of
tags in the file (in lower case), alongside its fre-
quency. Each entry entry will be of the type
“tag, frequency.” Entries must be printed in
tag’s alphabetical order.

2. The entry corresponding to the most popular tag
should be printed again as the last line, with the
string ”Most popular -> ” prepended. If 2 tags
appear the same number of times, the most popular
is the first in alphabetical order. If the file has no
HTML tags, don’t print anything.

As an example, if the HTML file has 2 html tag, 2
body tags, and 1 br tag, the right output will be:

body, 2

br, 1

html, 2

Most popular -> body, 2

Write a correct Makefile that compiles and links
html_parser.c. The compile process should use the
-Wall and -pedantic options, and produce no warn-
ings in nova.eecs

Submit html_parser.c and Makefile before
Wednesday, September 22nd, at 11:59pm.

4 Implementation Details

• There can multiple blank characters (blank imply-
ing spaces, tabs, or new line characters) between
the enclosing angle-brackets and the tag. In other
words, the strings <table> and < table > are 2
occurrences of the table tag.

• HTML tags are case-insensitive. In other words,
it doesn’t matter whether they are in up-
per (<TABLE>), lower (<table>), or mixed case
(<TaBlE>). Consequently, your program should no
differentiate tags based on the case. Moreover,
when outputting results, your program should print
tags in lower case

• You can assume that tag names will never be more
than 1023 characters long. Once this has been said,
we will take points out if the dynamic structure that
you use to keep track of tag occurrence uses more
bytes that needed

• Tag names can be composed of the following char-
acters only: a-z, A-Z, 0-9, hyphen (“-”), and un-
derscore (“ ”)

• Tag names that don’t appear in any HTML speci-
fication must be counted as well

• Empty tags (angle-brackets with nothing in the
middle, or only blanks) are illegal. They should
cause your parser to print the following message
(and after that exit):

Error in input file: empty tag in line 34

5 Other Notes

To help you fine-tune your program, we provide you
with an oracle, i.e., a valid version of the HTML parser

3

that works. You may want to use it to compare its out-
put to that of your program. The oracle has been com-
piled for several different architectures. Choose the one
that corresponds to your architecture (run uname -a

from your shell to get your architecture.)
We also provide a valid HTML file (index.html)that

you can use to test your program.

References

[RLJ98] D. Raggett, A. Le Hors, and I. Ja-
cobs. “HTML 4.0 Specification.” Available on-line

at http://www.w3.org/TR/1998/REC-html40-
19980424

[Mey95] E. A. Meyer. “Introduction
to HTML.” Available on-line at

http://www.cwru.edu/help/introHTML/toc.html

[FC00] M. Fellows, N. Casey. “The Alphabets,
Words, and Languages of Finite State
Machines.” LANL Megamath. Available

on-line at http://www.c3.lanl.gov/mega-
math/workbk/machine/mabkgd.html

4

