
 

50

 

Real-world hash functions

 

Information presented here is taken from the article “Selecting a Hashing Algo-
rithm”, B.J. McKenzie et al., 

 

Software Practice & Experience

 

, vol. 20, no. 2, February 
1990. 

 

Hashing algorithms for strings

 

All of these algorithms compute a hash value 

 

H

 

 for a string of length 

 

n

 

 whose charac-
ters are 

 

c

 

1

 

, 

 

c

 

2

 

, …, 

 

c

 

n

 

. The hash value is determined from successive partial results 

 

h

 

0

 

, 

 

h

 

1

 

, 

 

h

 

2

 

, …, 

 

h

 

n

 

, with each 

 

h

 

k

 

 computed from 

 

h

 

k–1

 

 as given in the formulas below. The hash 
table size is the value used in the 

 

mod

 

 operation at the end of each algorithm.

1. Amsterdam Compiler Kit (

 

ACK

 

)

There is a "mask" for characters, built as follows:

 

m

 

1

 

 = 171; m

 

k

 

 = rightmost 8 bits of 77m

 

k–1

 

+153

 

The hash value 

 

H

 

 is then the last 8 bits of 

 

h

 

n

 

, where 

 

h

 

0

 

 = 0

 

 and 

 

h

 

k

 

 = h

 

k–1

 

 + XOR(c

 

k

 

, m

 

k

 

).

2. Eidgenossische Technische Hochschule Modula-2 Cross Compiler (

 

ETH

 

)

 

h

 

0

 

 = 1; h

 

k

 

 = c

 

k

 

*((h

 

k–1

 

 mod 257)+1); H = h

 

n

 

 mod 1699

 

3. GNU C preprocessor (

 

GNU-cpp

 

)

 

h

 

0

 

 = 0; h

 

k

 

 = 4h

 

k–1

 

+c

 

k

 

; H = last 31 bits of h

 

n

 

, mod 1403

 

4. GNU compiler front end (

 

GNU-cc1

 

)

 

h

 

0

 

 = n; h

 

k

 

 = 613h

 

k–1

 

+c

 

k

 

; H = last 30 bits of h

 

n

 

, mod 1008

 

5. Portable C Compiler front end (

 

PCC

 

)

 

h

 

0

 

 = 0; h

 

k

 

 = 2h

 

k–1

 

+c

 

k

 

; H = last 15 bits of h

 

n

 

, mod 1013

 

6. Unix 4.3 BSD C preprocessor (

 

CPP

 

)

 

h

 

0

 

 = 0; h

 

k

 

 = 2h

 

k–1

 

+c

 

k; H = hn mod 2000

7. AT&T C++ compiler (C++)
h0 = 0; hk = 2hk–1+ck; H = hn mod 257

8. Icon translator (Icon)
h0 = 0; hk = hk–1+ck; H = hn mod 128



51

Performance
Algorithms were tested on 36,376 identifiers from a large bunch of C programs, and 
24,473 words from a UNIX dictionary.

ACK is a loser (U-shaped distribution). Icon, C++, GNU-cc1, and GNU-cpp seem to dis-
tribute the words well. Theoretical results suggest that an algorithm of the form hk = 
A*hk–1+ck; H = hn mod N will be good, with A a power of 2 for speed and N chosen ap-
propriately. The authors note:

"[A] and N need to be selected with care. Although it may seem unlikely that any-
one would choose one of the really bad combinations, the facts … indicate that 
far-from-optimal choices are made and persisted with. The experiments have 
shown that very small variations in N can produce large variations in the effi-
ciency of the hash-table lookup, and that the popular view, that choice of a prime 
number will automatically ensure a good result, is not well founded."


