
CS61B Summer 2006
Instructor: Erin Korber
Lecture 8, 10 July

Today, we’ll be talking about what happens “behind the scenes” when
we run a Java program - what is actually happening in memory and how it
affects us as programmers.

1 The call stack

• Stack frames

– Pushed onto the stack when methods are called
– Holds the state of the method

∗ which line of code is executing
∗ values of all the local variables

• Local variables (those declared inside a method)

– Alive as long as their frame is on the stack
– In scope only within the method that declared them
– State persists as long as they live, but they can only be used when

they are in scope.
– These rules are the same for primitive and reference variables

• Parameter passing

– Recall: Java is pass-by-value, so parameters are always copied.
– Parameters are just local variables, so the copies live in the stack

frame for that method as you would expect.
– The original values that were copied (in order to pass them) are

therefore not changed.
– Remember that we pass object references, not objects, so a method

might use a reference that is was passed to make changes to an
object that are visible everywhere.

• Exceptions

– When a method throws an exception, its stack frame pops, throw-
ing the exception to the previous frame. So frames keep popping
until an exception handler (try/catch) is reached, or we reach the
bottom of the stack.

1



2 The heap

• All objects live on the heap, regardless of whether the references point-
ing to them are instance or local variables.

• We know local variables live on the stack, inside their methods - but
what about instance variables?

• Instance variables live inside their objects (so they are alive as long as
the object is).

• Object creation

– Remember, objects are only created when we say new - just
declaring a reference does not create an object.

– When we instantiate a subclass, the superclass object is created
first and the subclass parts are “layered” around it.

• Object Death

– An object lives as long as there are live references to it.

– 3 ways to kill an object:

∗ Its only reference is a local variable, and that variable’s frame
pops from the stack.

∗ Its only reference is explicitly assigned to another object.
∗ Its only reference is explicitly set to null.

2


