CS61B Summer 2006
Instructor: Erin Korber
Lecture 8, 10 July

Today, we’ll be talking about what happens “behind the scenes” when
we run a Java program - what is actually happening in memory and how it
affects us as programmers.

1 The call stack

e Stack frames

— Pushed onto the stack when methods are called
— Holds the state of the method

* which line of code is executing

* values of all the local variables

e Local variables (those declared inside a method)

— Alive as long as their frame is on the stack
— In scope only within the method that declared them

— State persists as long as they live, but they can only be used when
they are in scope.

— These rules are the same for primitive and reference variables
e Parameter passing

— Recall: Java is pass-by-value, so parameters are always copied.

— Parameters are just local variables, so the copies live in the stack
frame for that method as you would expect.

The original values that were copied (in order to pass them) are
therefore not changed.

— Remember that we pass object references, not objects, so a method
might use a reference that is was passed to make changes to an
object that are visible everywhere.

e Exceptions

— When a method throws an exception, its stack frame pops, throw-
ing the exception to the previous frame. So frames keep popping
until an exception handler (try/catch) is reached, or we reach the
bottom of the stack.



2 The heap

All objects live on the heap, regardless of whether the references point-
ing to them are instance or local variables.

We know local variables live on the stack, inside their methods - but
what about instance variables?

Instance variables live inside their objects (so they are alive as long as
the object is).

Object creation
— Remember, objects are only created when we say new - just
declaring a reference does not create an object.
— When we instantiate a subclass, the superclass object is created
first and the subclass parts are “layered” around it.

Object Death

— An object lives as long as there are live references to it.
— 3 ways to kill an object:

* Its only reference is a local variable, and that variable’s frame
pops from the stack.

x Its only reference is explicitly assigned to another object.

* Its only reference is explicitly set to null.



