CS61B Summer 2006

Instructor: Erin Korber

Lecture 4, 29 June

Reading for tomorrow: Ch. 10, pp. 273-293, 307-309

1 I/0 (based on notes from JRS)

Here are some objects in the System class for interacting with a user

System.out is a PrintStream object that outputs to the screen. System.in
is an InputStream object that reads from the keyboard. [Reminder: this
is shorthand for ”System.in is a variable that references an InputStream
object.”]

But System.in doesn’t have methods to read a line directly. There is
a method called readLine that does, but it is defined on BufferedReader
objects.

- How do we construct a BufferedReader? One way is with an Input-
StreamReader. - How do we construct an InputStreamReader? We need
an InputStream. - How do we construct an InputStream? System.in is one.
(You can figure all of this out by looking at the constructors in the online
Java libraries API-specifically, in the java.io library.)

Why all this fuss? InputStream objects (like System.in) read raw data
from some source (like the keyboard), but don’t format the data. Input-
StreamReader objects compose the raw data into characters (which are typ-
ically two bytes long in Java). BufferedReader objects compose the char-
acters into entire lines of text. Why are these tasks divided among three
different classes? So that any one task can be reimplemented (say, for im-
proved efficiency) without changing the other two.

Here’s a complete Java program that reads a line from the keyboard and
prints it on the screen.

import java.io.*;

class SimpleIO {
public static void main (String [] arg) throws Exception {
BufferedReader keybd =
new BufferedReader (new InputStreamReader(System.in));
System.out.println(keybd.readLine());
}
}



1.1 Classes for Web Access

Let’s say we want to read a line of text from the White House Web page.
(The line will be HTML, which looks ugly. You don’t need to understand
HTML.)

How to read a line of text? With readLine on BufferedReader. How
to create a BufferedReader? With an InputStreamReader. How to create a
InputStreamReader? With an InputStream. How to create an InputStream?
With a URL.

import java.net.x*;
import java.io.*;

class WHWWW {
public static void main(String[] arg) throws Exception {
URL u = new URL("http://www.whitehouse.gov/");
InputStream ins = u.openStream() ;
InputStreamReader isr = new InputStreamReader(ins);
BufferedReader whiteHouse = new BufferedReader(isr);
System.out.println(whiteHouse.readLine());

2 Encapsulation

e Purpose: to allow the programmer to maintain control of the data.

e Until now, have been just using the dot operator to access instance
variables. (e.g. theDog.name = ‘‘Fido’’;). But sometimes, we
write methods that expect instance variables to have certain kinds
of values (for example, we often want integers to be positive). Encap-
sulation allows us to enforce these restrictions.

e The idea: instead of getting and setting instance variables with the
dot operator, have getter and setter methods for access.

e How to force users to use these methods? Access modifiers

3 Access levels

e Java has 4 access levels and 3 access modifiers



— can be applied to classes, constructors, instance variables, and
methods

e public means anyone can access it

— generally use this for classes, most constructors, and methods you
want exposed to other code (like getters and setters)

e private means only code within the same class can access it
— use this for instance variables, and for methods you want to hide

e default (what you get when you don’t use a modifier) means only code
in the same package can access it

e protected is like default, except that subclasses outside the package
can inherit the protected thing (will learn what this means next week).

4 Packages

e A package is a collection of classes that “trust” each other.
e Also helps with name collisions.

— Can type the full name of a class (e.g. java.util.ArrayList)
every time you use it.

— Or can use an import statement.

e Classes, methods, and variables with default protection are visible
within a package.

5 Inner classes

e Defined inside another class
e Has access to even the private methods and variables of the outer class.
e An inner object is tied to a specific outer object.

1. Make an instance of the outer class
2. Use it to make an instance of the inner class.

3. The two are now linked.



