
CS61B Summer 2006
Instructor: Erin Korber
Lecture 22, 2 Aug.

Game Trees

1 Why Game Trees?

• Consider the problem of finding the best move in a two-player game.

• One idea: assign a value to each possible move and pick the highest.
(e.g. making the move that gets you the most pieces in Othello)

• But this is often not the best move - it might set up a good move for
the opponent.

• So for each possible move, we should consider the opponent’s possible
moves, assume that they choose the best move for them, and use that
to determine the value of our move.

• But to determine the opponent’s best move, we need to consider our
possible responses to their moves, etc.

• How to organize all of these calculations? A game tree. Each node
is a game state (e.g. board configuation), and each edge is a move.
The game tree shows us the structure of the sequence of recursive calls
that compute the possible ways that the game can continue after each
move.

2 Minimax

• Once we have the game tree, how do we use it?

• The leaves of the tree are completed game states.

• We can assign a value to each final (game-over) position. For example:

– In a simple win-loss game like tic-tac-toe, we could assign +1 to
a win for us, 0 for a tie, and -1 for a win for the opponent.

– In Othello, supposing that our gamepiece color is white, we could
assign (# white pieces on board - # black pieces on board) as
the value of a completed game.

1



• We can use the values of a node’s children to determine its value.

• Based on how we assigned values to the final game states, suppose
that I am trying to maximize the value of the finished game, and my
opponent is trying to minimize the value.

• So at levels of the tree where it is my turn, assign each node a value of
(max(its childrens’ values)). At levels where it is the opponent’s turn,
assign each node a value of (min(its childrens’ values)).

• When playing the game, I always choose the next move that leads to
the node with the maximum value; my opponent always chooses to go
to the minimum value.

• This is the minimax algorithm.

Example game tree (diagram from JRS):

2



So once we have generated the whole game tree, we can use the minimax
algorithm to calculate how to play perfectly at each step. There’s a problem
with this though - the full game tree for most games is so huge, it’s impossible
to compute in any reasonable time (or even unreasonable time!). So we need
some ways to avoid computing the whole tree. We’ll look at two - one that
keeps us from looking at every branch at a certain level (reducing the with
of the tree), and one that allows us to “cut off” the search after a certain
level (reducing the depth).

3 Alpha-beta pruning

Alpha-beta pruning is a method of cutting off (“pruning”) branches of the
game tree based on the idea that if you know you will never get to a certain
position (because your opponent will always make a better move down a
different branch of the tree), it’s pointless to search for an optimal move
down that branch.

How do we capture this idea in a way that we can translate into code?
We use two variables, α and β to track the best score so far at a maximizing
(our turn) node and a minimizing (opponent’s turn) node. So α will increase
as we look at more children (as we find better moves), and β will decrease.

Pseudocode for alpha-beta:

• Start with α = Integer.MIN VALUE, β = Integer.MAX VALUE

• At a leaf node: return the value of that (final) node.

• At a minimizing level (opponent’s move):

– For each child, until α ≥ β:

∗ Set β = min(β,alpha-beta(α, β))

– Return β.

• At a maximizing level (our move):

– For each child, until α ≥ β:

∗ Set α = max(α,alpha-beta(α, β))

– Return α.

3



Example game tree with alpha-beta pruning (diagram from JRS):

4 Estimator functions

For many games (and essentially all interesting ones), alpha-beta pruning
is not enough - we still have no hope of searching the entire game tree. In
order to make the search tractable, we need to stop at some specified depth
- this amounts to only looking a fixed number of moves into the future of the
game, instead of all the way to the end of the game. So now, our leaf nodes
will not necessarily be only completed game states - we may cut off a branch
before it is complete. We need some way to assign a value to these states -
we can do this using “estimator functions” or “evaluation functions”.

These functions are a way of deciding how “good” a particular (not-
completed) game state is. What this function will be depends entirely on
the particular game and the cleverness of the programmer! For example,
one very simple evaluation function for the game of Othello would be the
same one that we use at the end-game state; (# white pieces on board - #
black pieces on board). A smarter evaluation function would use the fact
that edge pieces are more valuable than center pieces, and corner pieces are
best of all.

Writing good evaluation functions that are also quick to compute is
perhaps the trickiest and most “black magic”-esque part of designing game-
playing AIs.

4


