CS61B Summer 2006
Instructor: Erin Korber
Lectures 18,19: 26,27 July

Yesterday, we talked about binary search trees, and their efficiency over
linked lists as a data structure for storing dictionaries. However, the possible
©(n) worst-case performance for most operations (which occurs when the
tree is highly unbalanced) was a concern. Today, we’ll discuss several ways
to augment the BST data structure to prevent this situation from occuring.

1 AVL Trees

AVL trees are the first example (invented in 1962) of a “self-balancing”
binary search tree. AVL trees satisfy the height balance property - that for
any node n, the heights of n’s left and right subtrees can differ by at most 1.
This property will ensure that the tree remains balanced, so its height will
be proportional to log(n) as we want, avoiding the possible worst case where
the height of the tree was proportional to n. Note that the height balance
property enforces that any subtree of an AVL tree is also an AVL tree. So for
an AVL tree, the running time of the find, insert, and remove operations
will be in O(log n), even in the worst case (unlike a generic BST, in which
the worst case time was in ©(n)).

We will need to modify our insert and remove methods to ensure that
we maintain the height balance property when inserting and removing nodes.
Our job will be made easier if we add a height instance variable to our nodes,
so we can easily tell the height of a node and compare it with others. We
will call a node unbalanced if its left and right children differ in height by
more than 1.

We will balance the tree after an insertion with a search-and-repair strat-
egy called a “trinode restructing” method, which will alter the tree in all
the needed ways to maintain the height balance property (along with the
BST invariant).

1.1 Trinode restructing method

After inserting a node w, follow the path up towards the root from it until
you find an unbalanced node; call this node z. Call the higher-height child
of z y, and call the higher-height child of y x. (So x is a grandchild of z.)
Then execute the following;:

1. Let (a,b,c) be an inorder listing of the nodes x, y, and z, and let (TO,
T1, T2, T3) be an inorder listing of the four subtrees of x,y, and z that
are not rooted at x, y, or z.

2. Replace the subtree rooted at z with a new subtree rooted at b.

3. Let a be the left child of b and let TO and T1 be the left and right
subtrees of a.

4. Let ¢ be the right child of b and let T2 and T3 be the left and right
subtrees of c.

Example: inserting the “54” node and rebalancing. Observe that the nodes
for 78 and 44 become unbalanced after this insertion.

e x is the “62” node, y is the “50” node, and z is the “78” node.
e So a is the “50” node, b is the “62” node, and c is the “78” node.
e TO is the subtree rooted at “48”, T1 at “64”, T2 is empty, and T3 at

“88”.
44 44
/\ /\
17 78(2) 17 62
/ / 0\ / / 0\
12 50(y) 88 12 50 78
/ \ / \ \
48 62(x) 48 54 88
/
54

Often, the procedure done by the trinode restructing is presented as 4
different kinds of rotations, corresponding to the 4 possible ways that (a,b,c)
could be mapped to (x,y,z).

Note that since the trinode restructuring method needs to look at and
move only a fixed number of nodes, it runs in O(1) time, so the insert
operation will still take only (log n) time.

Similarly to with insertion, we remove an item from an AVL tree by
first removing in the usual way for a BST, then rebalancing the tree using
trinode restructuring. However, this restructuring may reduce the height of
the subtree rooted at b by 1, which could cause an ancestor of b to become
unbalanced. Therefore, a single restructuring operation isn’t sufficient. Af-
ter rebalancing z, we continue walking up the tree towards to root, looking
for unbalanced nodes and rebalancing every time we find one.

Although we have to do possibly more than a single restructuring, the
most we could have to do is in O(log n), since the height of the tree is (log
n). Therefore, remove is still in O(log n) time.

2 Splay trees

A splay tree is another type of balanced binary search tree. All splay tree
operations run in O(log n) time on average, where n is the number of entries
in the tree, assuming you start with an empty tree. Any single operation
can take ©(n) time in the worst case, but operations slower than O(log n)
time happen rarely enough that they don’t affect the average.

Splay trees really excel in applications where a small fraction of the en-
tries are the targets of most of the find operations, because they’re designed
to give especially fast access to entries that have been accessed recently.

Splay trees have become the most widely used data structure invented
in the last 20 years, because they’re the fastest type of balanced search tree
for many applications, since it is quite common to want to access a small
number of entries very frequently, which is where splay trees excel.

Splay trees, like AVL trees, are kept balanced by means of rotations.
Unlike AVL trees, splay trees are not kept perfectly balanced, but they tend
to stay reasonably well-balanced most of the time, thereby averaging O(log
n) time per operation in the worst case (and sometimes achieving O(1)
average running time in special cases). We’'ll analyze this phenomenon more
precisely when we discuss amortized analysis.

2.1 Splay tree operations
e find(Key k)

The find operation in a splay tree begins just like the find operation
in an ordinary binary search tree: we walk down the tree until we find
the entry with key k, or reach a dead end.

However, a splay tree isn’t finished its job. Let X be the node where
the search ended, whether it contains the key k or not. We splay X
up the tree through a sequence of rotations, so that X becomes the
root of the tree. Why? One reason is so that recently accessed entries
are near the root of the tree, and if we access the same few entries
repeatedly, accesses will be quite fast. Another reason is because if X
lies deeply down an unbalanced branch of the tree, the splay operation
will improve the balance along that branch.

When we splay a node to the root of the tree, there are three cases
that determine the rotations we use.

1. X is the right child of a left child (or the left child of a right
child): let P be the parent of X, and let G be the grandparent of
X. We first rotate X and P left, and then rotate X and G right,
as illustrated below.

G G X
/ \ / \ / \
P /D\ X /D\ P G
/' \ ==> / \ ==> /N /\
/A\ X P /C\ /A\ /BIC\ /D\
/ \ /\
/B\ /C\ /A\ /B\

The mirror image of this case— where X is a left child and P is
a right child—uses the same rotations in mirror image: rotate X
and P right, then X and G left. Both the case illustrated above
and its mirror image are called the ”zig-zag” case.

2. X is the left child of a left child (or the right child of a right

child): the ORDER of the rotations is REVERSED from case 1.
We start with the grandparent, and rotate G and P right. Then,
we rotate P and X right.
The mirror image of this case— where X and P are both right
children—uses the same rotations in mirror image: rotate G and
P left, then P and X left. Both the case illustrated below and its
mirror image are called the ”zig-zig” case.

G P X
/\ / \ / \
P /D\ X G /A\ P
/ \ ==> / N/ \ ==> / \
X /C\ /A\/B|C\/D\ /B\ G
/ \ / \
/A\ /B\ /C\ /D\

We repeatedly apply zig-zag and zig-zig rotations to X; each pair
of rotations raises X two levels higher in the tree. Eventually,
either X will reach the root (and we're done), or X will become the
child of the root. One more case handles the latter circumstance.

3. X’s parent P is the root: we rotate X and P so that X becomes
the root. This is called the "zig” case.

P X
/ \ / \
X /C\ /A\ P
/ \ ==> / \
/AN /B\ /B\ /C\

Here’s an example of £ind (7). Note how the tree’s balance improves.

11 11 11 (7]
/ N\ / N\ / N\ /\

1 12 1 12 (7] 12 1 11
/\ /\ / \ /\ / \
0 9 0 9 1 9 0656 9 12
/ \ / \ /N /N / N/ N\

3 10 =zig-zig=> (7] 10 =zig-zag=> 0 58 10 =zig=> 3 6 8 10
/\ /\ /\ / \
2 5 5 8 3 6 4
/ \ / \ / \
4 [7] 3 6 2 4
/ \ / \
6 8 2 4

By inspecting each of the three cases (zig-zig, zig-zag, and zig), you
can observe a few interesting facts. First, in none of these three cases
does the depth of a subtree increase by more than two. Second, every
time X takes two steps toward the root (zig-zig or zig-zag), every node
in the subtree rooted at X moves at least one step closer to the root.
As more and more nodes enter X’s subtree, more of them get pulled
closer to the root.

A node that initially lies at depth d on the access path from the root
to X moves to a final depth no greater than 3 4+ d/2. In other words,
all the nodes deep down the search path have their depths roughly
halved. This tendency of nodes on the access path to move toward
the root prevents a splay tree from staying unbalanced for long (as the
example below illustrates).

/ \
11 14 1
/ \ / \
9 12 0 11
/ \ / N\
7 10 / 13
/ \ 7 / 0\
5 8 ==========> /\ 12 14
/ \ find(1) / 9
3 6 3 / \
/\ /\8 10
1 4 2 5
/ \ / \
0 2 4 6

e first(), last()

These methods begin by finding the entry with minimum or maxi-
mum key, just like in an ordinary binary search tree. Then, the node
containing the minimum or maximum key is splayed to the root.

e insert(KeyValPair p)

insert begins by inserting the new entry p, just like in an ordinary
binary search tree. Then, it splays the new node to the root.

e remove (Key k)

An entry having key k is removed from the tree, just as with ordinary
binary search trees. Let X be the node removed from the tree. After X
is removed, splay its parent to the root. Here’s a sequence illustrating

the operation remove(2).

In this example, the key 4 moved up to replace the key 2 at the root.
After the node containing 4 was removed, its parent (containing 5)
splayed to the root.

If the key k is not in the tree, splay the node where the search ended
to the root, just like in a find operation.

3 2-3-4 Trees

2-3-4 trees are a kind of prefectly balanced search tree. They are so named
because every node has 2, 3, or 4 children, except leaf nodes, which are all
at the bottom level of the tree. Each node stores 1, 2, or 3 entries, which
determine how other entries are distributed among its children’s subtrees.

Each non-leaf node has one more child than keys. For example, a node
with keys [20, 40, 50] has four children. Eack key k in the subtree rooted at
the first child satisfies k < 20; at the second child, 20 < k < 40; at the third
child, 40 < k < 50; and at the fourth child, k > 50.

3.1 B-trees: the general case of a 2-3-4 tree

2-3-4 trees are a type of B-tree. A B-tree is a generalized version of this
kind of tree where the number of children that each node can have varies.
Because a range of child nodes is permitted, B-trees do not need re-balancing
as frequently as other self-balancing binary search trees, but may waste some
space, since nodes are not entirely full. The lower and upper bounds on the
number of child nodes are typically fixed for a particular implementation.
For example, in a 2-3-4 tree, each non-leaf node may have only 2,3, or 4
child nodes. The number of elements in a node is one less than the number
of children.

A B-tree is kept balanced by requiring that all leaf nodes are at the same
depth. This depth will increase slowly as elements are added to the tree, but
an increase in the overall depth is infrequent, and results in all leaf nodes
being one more hop further removed from the root.

B-trees have advantages over alternative implementations when node
access times far exceed access times within nodes. This usually occurs when
most nodes are in secondary storage, such as on hard drives. By maximizing
the number of child nodes within each internal node, the height of the tree
decreases, balancing occurs less often, and efficiency increases. Usually this
value is set such that each node takes up a full disk block or some other size
convenient to the storage unit being used. So in practice, B-trees with larger
internal node sizes are more commonly used, but we will be discussing 2-3-4
trees since it is useful to be able to work out examples with a managable
node size.

3.2 2-3-4 tree operations
e find(Key k)

Finding an entry is straightforward. Start at the root. At each node,
check for the key k; if it’s not present, move down to the appropriate

child chosen by comparing k against the keys.

Continue until k is

found, or k is not found at a leaf node. For example, find(74) traverses
the double-lined boxes in the diagram below.

e insert(KeyValPair p)

[43]

insert(), like find(), walks down the tree in search of the key k. If it
finds an entry with key k, it proceeds to that entry’s ”left child” and

continues.

Unlike find(), insert() sometimes modifies nodes of the tree as it walks

down.

Specifically, whenever insert() encounters a 3-key node, the

middle key is ejected, and is placed in the parent node instead. Since
the parent was previously treated the same way, the parent has at
most two keys, and always has room for a third. The other two keys
in the 3-key node are split into two separate 1-key nodes, which are
divided underneath the old middle key (as the figure illustrates).

[20]

/ N\

[10 11 12] [30]|

[10]

12| [30]

For example, suppose we insert 60 into the tree depicted earlier. The
first node traversed is the root, which has three children; so we kick
the middle child (40) upstairs. Since the root node has no parent,
a new node is created to hold 40 and becomes the root. Similarly,
62 is kicked upstairs when insert() finds the node containing it. This
ensures us that when we arrive at the leaf node (labeled 57 in this
case), there’s room to add the new key 60.

[14] 32| [43] |62 70 79|

[101 1181 [251 33| [42] 47| |57 60| |é6l |74] |81}

Observe that along the way, we created a new 3-key node “62 70
79”. We do not kick its middle key upstairs until the next time it is
traversed.

Again, the reasons why we split every 3-key node we encounter (and
move its middle key up one level) are (1) to make sure there’s room
for the new key in the leaf node, and (2) to make sure that above
the leaf nodes, there’s room for any key that gets kicked upstairs.
Sometimes, an insertion operation increases the depth of the tree by
one by creating a new root.

remove (Key k)

2-3-4 tree remove() is similar to remove() on binary trees: you find
the entry you want to remove (having key k). If it’s in a leaf node,
you remove it. If it’s in an interior node, you replace it with the entry
with the next higher key. That entry must be in a leaf node. In either
case, you remove an entry from a leaf node in the end.

11

Like insert(), remove() changes nodes of the tree as it walks down.
Whereas insert() eliminates 3-key nodes (moving nodes up the tree) to
make room for new keys, remove() eliminates 1-key nodes (sometimes
pulling keys down the tree) so that a key can be removed from a leaf
without leaving it empty. There are three ways 1-key nodes (except
the root) are eliminated.

1. When remove() encounters a 1-key node (except the root), it tries
to steal a key from an adjacent sibling. But we can’t just steal
the sibling’s key without violating the search tree invariant. This
figure shows remove’s “rotation” action, when it reaches “30”.
We move a key from the sibling to the parent, and we move a
key from the parent to the 1-key node. We also move a subtree
S from the sibling to the 1-key node (now a 2-key node).

Note that we can’t steal a key from a non-adjacent sibling.

|20 40| |20 50/
/1A S
1101 1301 150 51 521 10l 130 4ol I51 52
AN TN A N TN
S S

2. If no adjacent sibling has more than one key, a rotation can’t be
used. In this case, the 1-key node steals a key from its parent.
Since the parent was previously treated the same way (unless it’s
the root), it has at least two keys, and can spare one. The sibling
is also absorbed, and the 1-key node becomes a 3-key node. The
figure illustrates remove’s action when it reaches “10”. This is
called a “fusion” operation.

101 1301 |50 110 20 30| |50

12

3. If the parent is the root and contains only one key, and the sibling
contains only one key, then the current 1-key node, its 1-key
sibling, and the 1-key root are merged into one 3-key node that
serves as the new root. The depth of the tree decreases by one.
Eventually we reach a leaf. After processing the leaf, it has at
least two keys (if there are at least two keys in the tree), so we
can delete the key and still have one key in the leaf.

For example, suppose we remove 40 from the large tree depicted earlier.
The root node contains 40, which we mark ”xx” here to remind us that
we plan to replace it with the smallest key in the root node’s right
subtree. To find that key, we move on to the 1-key node labeled “50”.
Following our rules for 1-key nodes, we merge 50 with its sibling and
parent to create a new 3-key root labeled 720 xx 50”.

[20 xx 50|

101 1181 |251 33| |42] |47| |57 60| |66l |74] |81

Next, we visit the node labeled 43. Again following our rules for 1-key
nodes, we move 62 from a sibling to the root, and move 50 from the
root to the node containing 43.

|20 xx 62|
[\
/=== / \ \-----\
|14 |32] |43 50| |70 79]
/ N\ / N\ / | \ / 1\

[101 1181 |251 33| |42] 47| |57 60| |66] [74] |81}

3.3

Finally, we move down to the node labeled 42. A different rule for
1-key nodes requires us to merge the nodes labeled 42 and 47 into a
3-key node, stealing 43 from the parent node.

|20 xx 62]

[10] [18] [25] 33| |42 43 47| |57 60| 66| |74 181]

The last step is to remove 42 from the leaf node and replace ”xx” with
42.

[20 42 62|
[mmmmm e \
/====/ / 0\ \-———- \
—— / | ——
|14 | 132] |50 |70 791
/\ /\ / 0\ /1 N\
101 118 [25] |33 143 47| |57 60| 66| [74] |81]

Running times

A 2-3-4 tree with depth d has between 2% and 49 leaf nodes. If n is the total
number of nodes in the tree, then n > 2(d + 1) — 1. By taking the logarithm
of both sides, we find that d is in O(log n).

The time spent visiting a 2-3-4 node is typically longer than in a binary

search tree (because the nodes and the rotation and fusion operations are
complicated), but the time per node is still in O(1).

The number of nodes visited is proportional to the depth of the tree.

Hence, the running times of the find(), insert(), and remove() operations
are in O(d) and hence in O(log n), even in the worst case.

14

