
CS61B Summer 2006
Instructor: Erin Korber
Lectures 16: 24 July

1 Stacks

• “LIFO” - last in, first out

• Can access only the top item in the stack

• push - put an item on the stack

• pop - take an item off the stack

• Sometimes also use peek - look at the thing on top of the stack without
removing it

• public interface Stack {
public Object pop();
public void push(Object o);

}

• Can be implemented easily as a singly linked list - insertFront,
removeFront are push, pop

• The call stack is (obviously) an example of a stack.

• Can also be implemented as an array

– Have to have a max size bound, or be willing to resize the array
if needed (this is slow!)

– Bottom of stack at index 0

– Maintain a “current size” variable so we know where to go to
push/pop elements.

– Code for this implementation:

public ArrayStack implements Stack {

private Object[] theArray;
private int currSize = 0;

1



public Object pop() {
Object item = theArray[currSize-1];
currSize--;
return item;

}

public void push(Object item) {
if (theArray.length = currSize) {

newArray = new Object[currSize * 2];
for (int i = 0; i<theArray.length; i++) {

newArray[i] = theArray[i];
}
theArray = newArray;

}
theArray[currSize] = item;
currSize++;

}
}

2 Queues

• “FIFO” - first in, first out

• Can only add items at the front, remove them from the back

• enqueue - put an item at the back of the queue

• dequeue - remove an item from the front of the queue

• public interface Queue {
public Object dequeue();
public void enqueue(Object o);

}

• Can be implemented as a singly linked list with a tail pointer - insertBack,
removeFront are enqueue, dequeue

• Example: printer queues

• Queues can also be implemented as an array!

2



– Have to have a max size bound, or be willing to resize the array
if needed (this is slow!)

– Could slide everything over one every time we remove something
from the queue, but this is slow.

– Better: use a “circular buffer” implementation

∗ Keep two indices, for the first and last items in the queue,
which “circle back” to 0 after falling off the end of the array.

∗ Code for this implementation:
public ArrayQueue implements Queue {

private Object[] theArray;
private int frontIndex = 0;
private int rearIndex = 0;
private int currSize = 0;

public Object dequeue() {
if (currSize = 0) {

System.out.println(‘‘empty queue’’);
return null;

} else {
Object item = theArray[frontIndex];
frontIndex = (frontIndex + 1) % theArray.length;
currSize--;
return item;

}
}

public void enqueue(Object item) {
if (theArray.length == currSize) {
resize();

}
theArray[(rearIndex + 1) % theArray.length] = item;
rearIndex = rearIndex + 1;
currSize++;
}

public void resize() {
//elided

}
}

3



3 Priority Queues

• Items have a key and associated value

• Can access only the item with the highest priority, which is generally
the lowest key.

• public interface PriorityQueue {
public boolean isEmpty();
public void insert(KeyValPair p);
public KeyValPair seeMin();
public KeyValPair removeMin();

}

4 Binary Heaps

We can implement a priority queue using a binary heap, which is a complete
binary tree which satisfies the heap order property. A complete binary tree
is a binary tree in which every row is full, except possibly the bottom row,
which is filled from left to right. The heap order property states that no
child has a key less than its parent’s key. Note that any subtree of a binary
heap is also a binary heap.

We can implement a binary heap in a node-and-reference way, like the
binary trees that we already have. However, the completeness property
makes an array-based implementation (without storing explicit child refer-
ences) possible - we store the root at index 1. If a node’s index is i, then its
children will be at 2i and 2i+1.

Let’s look at how we can implement the priority queue operations with
a binary heap.

• seeMin() - the heap order property guarantees that the entry with the
minimum key is always at the top of the heap, so we can just return
the key-value pair at the root.

• insert(KeyValPair p) - Let the key of p be k and the value of p be
v. We place the new entry p in the bottom level of the tree, at the
first free spot from the left. If the bottom level is full, start a new level
with x at the far left. (So in an array-based implementation, we place
x in the first free location in the array.)

4



Of course, doing this may cause us to violate the heap-order property.
We correct this by having the entry “bubble” up the tree until the
heap-order property is satisfied. More precisely, we compare k with
its parent’s key; if k is less, we exchange p with its parent and repeat
the procedure with p’s new parent. For instance, if we insert an entry
whose key is 2:

2 2 2 2
/ \ / \ / \ / \
/ \ / \ / \ / \
5 3 5 3 5 3 2 3
/ \ / \ => / \ / \ => / \ / \ => / \ / \
9 6 11 4 9 6 11 4 9 2 11 4 9 5 11 4
/ \ / / \ / \ / \ / \ / \ / \

17 10 8 17 10 8 2 17 10 8 6 17 10 8 6

As this example illustrates, a heap can contain several entries with the
same key.

When we finish, is the heap-order property satisfied? Yes, if the heap-
order property was satisfied before the insertion. Let’s look (see di-
agram below) at a typical exchange of p with a parent x during the
insertion operation. Since the heap-order property was satisfied before
the insertion, we know that x ≤ s (where s is p’s sibling), x ≤ l, and
x ≤ r (where l and r are p’s children). We only swap if p ¡ x, which
implies that p ¡ s; after the swap, p is the parent of s. After the swap,
p is the parent of l and r. All other relationships in the subtree rooted
at p are maintained, so after the swap, the tree rooted at p has the
heap-order property.

x p
/ \ / \
s p => s x
/\ /\ /\ /\
l r l r

• KeyValPair removeMin() - If the heap is empty, return null or throw
an exception. Otherwise, begin by removing the entry at the root node
and saving it for the return value. This leaves a hole at the root. We
fill the hoel with the last entry in the tree (which we call ”x”), so that
the tree is still complete.

5



It is unlikely that x has the minimum key. Fortunately, both subtrees
rooted at the root’s children are heaps, and thus the new mimimum key
is one of these two children. We bubble x down the heap as follows:
if x has a child whose key is smaller, swap x with the child having
the minimum key. Next, compare x with its new children; if x still
violates the heap-order property, again swap x with the child with the
minimum key. Continue until x is less than or equal to its children, or
reaches a leaf.

Consider running removeMin() on our original tree.

2 8 3 3
/ \ / \ / \ / \
/ \ / \ / \ / \
5 3 5 3 5 8 5 4
/ \ / \ => / \ / \ => / \ / \ => / \ / \
9 6 11 4 9 6 11 4 9 6 11 4 9 6 11 8
/ \ / / \ / \ / \

17 10 8 17 10 17 10 17 10

Above, the entry bubbled all the way to a leaf. This is not always the
case, as the example below shows.

1 4 2
/ \ / \ / \
/ \ / \ / \
2 3 => 2 3 => 4 3
/ \ / \ / \ / / \ /
9 6 11 4 9 6 11 9 6 11

5 Heapsort

We can use heaps for another way to sort items - simply put all of them into
a heap, then remove them one by one - since we are always removing the
smallest, we can get a sorted list out easily.

6


