CS61B Summer 2006
Instructor: Erin Korber
Lecture 10, 12 July

Linked Lists

1 Why lists?

We can store a list of items as an array, but there are disadvantages to this
representation. First, arrays have a fixed length that can’t be changed. If
we want to add items to a list, but the array is full, we have to allocate a
whole new array.

Second, if we want to insert an item at the beginning or middle of an
array, we have to slide half the items over one place to make room. This
takes time proportional to the length of the array.

We can avoid these problems by choosing a Scheme-like representation
of lists. A linked list is made up of “nodes”. Each node has two components:
an item, and a reference to the next node in the list. These components are
analogous to Scheme’s x“car” and “cdr”. However, our node is an explicitly
defined object.

2 List Nodes

List node is an example of a recursive data type - we use list nodes as part
of the definition of what a list node is.

public class ListNode {
int item;
ListNode next;

//methods here
}

Let’s make some ListNodes.

ListNode 11 = new ListNode();
ListNode 12 = new ListNode();
ListNode 13 = new ListNode();
11.item = 7;
12.item = 0;

13.item = 6;
Now let’s link them together.

11.next = 12;
12.next 13;

What about the last node? Since the last node has no “next” object, we
need its last reference to refer to nothing - a.k.a. null.

13.next = null;

To simplify programming, we can add some constructors to the ListNode
class.

public ListNode(int item, ListNode next) {
this.item = item;
this.next = next;

public ListNode(int item) {
this(item, null);
}

These constructors allow us to emulate Scheme’s “cons” operation, like so:
ListNode 11 = new ListNode(7, new ListNode(0, new ListNode(6)));

Inserting an item into the middle of a linked list is a constant-time opera-
tion, and the list can keep growing until memory runs out. The insertAfter
ListNode method inserts a new item into the list immediately after the cur-
rent one.

public void insertAfter(int item) {
next = new ListNode(item, next);

}

3 Why not linked lists?

Linked lists do have some disadvantages from arrays. Finding the nth item
of a linked list takes time proportional to n, even though it is a constant-
time operation on array-based lists. The nth method recursively finds the
nth node in a list that starts with the current node this.

public ListNode nth(int n) {

if (n == 1) {

return this;

} else if ((next == null) || (n < 1)) {

System.out.println(’’There is no ’’+ n +’’th node!’’);
return null;

} else {

return next.nth(n - 1);

4 Lists of Objects

For greater generality, we can change ListNodes so that each node contains
not an int, but a reference to any object.

public class SListNode {

}

public Object item;
public SListNode next;

The “S” in “SListNode” stands for singly-linked.

5 A List Class

There are two problems with SListNodes.

1. Suppose x and y are pointers to the same shopping list. Suppose

we insert a new item at the beginning of the list thus: x = new
SListNode("eggs", x);

vy doesn’t point to the new item; y still points to the second item in
x’s list. If y goes shopping for x, he’ll forget to buy eggs.

How do you represent an empty list? The obvious way is ”x = null”.
However, Java won’t let you call any method on a null object. If
you write ”x.nth(1)” when x is null, you’ll get a run-time error, even
though x is declared to be an SListNode, so you would expect to get
the “The list has no 1th node!” message and a null reference returned.

The solution is a separate SList class, whose job is to maintain the head

(first node) of the list. We will put many of the methods that operate on
lists in the SList class, rather than the SListNode class.

public class SList {
private SListNode head;

public SList() {
head = null;
}

public SList(SListNode head) {
this.head = head;
}

public void insertFront(Object item) {
head = new SListNode(item, head);
}
}

Now, when an item is inserted at the front of a SList, every reference to
that SList can see the change.

If we wanted, we could also have the SList class keep a record of the
SList’s size (number of SListNodes), so that the size could be determined
more quickly than if the SListNodes had to be counted.

6 Doubly linked lists

As we have seen, inserting an item at the front of a linked list is easy.
Deleting from the front of a list is also easy:

public void deleteFront();
if (head '= null) {
head = head.next;
size——;
+
}

However, inserting or deleting an item at the end of a list entails a search
through the entire list, which might take a long time. One possible solution
to this problem is a doubly-linked list, in which each node has references to
both the previous and next node, and the list has references to its head and
tail nodes.

public class DListNode {
private Object item;
private DListNode next;
private DListNode prev;

//methods here

public class Dlist {
private DListNode head;
private DListNode tail;

//methods here

DLists make it possible to insert and delete items at both ends of the
list without having to go through every item in the list. For example, the
following code removes the tail node if there are at least two items in the
DList.

tail.prev.next = null;
tail = tail.prev;

You’'ll need a special case for a DList with no items. You'll also need a
special case for a DList with one item, because tail.prev.next does not exist.
(Instead, head needs to be changed.) In lab today, you'll be implementing
this and several other methods in the DList class.

7 Lists in the Java library

The Java library has several list classes (classes that implement the List
interface) - the two you will see most often are ArrayList and LinkedList.
You can read about these implementations in the API if you wish.

Since one of the main purposes of this class is learning to implement
data structures, we are writing our own list classes rather than just using
those from the library - this will be true for several of the data structures we
discuss. Also, you will often find that our version of a given data structure
differs from the library version in some ways - often, what is given in the

library will not be exactly suited to a paricular purpose, and writing your
own version will provide better usability and/or performance.

Finally, although we are using Java to write our programs in this course,
the class is about data structures and algorithms, not about Java, so the
techniques that you learn here are applicable to programming in any lan-
guage.

